mirror of https://github.com/InternLM/InternLM
638 lines
24 KiB
Python
638 lines
24 KiB
Python
import pytest
|
|
import torch
|
|
from auto_gptq.modeling import BaseGPTQForCausalLM
|
|
from bs4 import BeautifulSoup
|
|
from lmdeploy import TurbomindEngineConfig, pipeline
|
|
from PIL import Image
|
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
prompts = ['你好', "what's your name"]
|
|
|
|
|
|
def assert_model(response):
|
|
assert len(response) != 0
|
|
assert 'UNUSED_TOKEN' not in response
|
|
assert 'Mynameis' not in response
|
|
assert 'Iama' not in response
|
|
|
|
|
|
class TestChat:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm2_5-7b-chat', 'internlm/internlm2_5-7b-chat-1m',
|
|
'internlm/internlm2_5-20b-chat', 'internlm/internlm2_5-1_8b-chat',
|
|
'internlm/internlm2-chat-7b', 'internlm/internlm2-chat-7b-sft',
|
|
'internlm/internlm2-chat-20b', 'internlm/internlm2-chat-20b-sft',
|
|
'internlm/internlm2-chat-1_8b', 'internlm/internlm2-chat-1_8b-sft'
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
'usefast',
|
|
[
|
|
True,
|
|
False,
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name, usefast):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True,
|
|
use_fast=usefast)
|
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
|
# it will be loaded as float32 and might cause OOM Error.
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, torch_dtype=torch.float16,
|
|
trust_remote_code=True).cuda()
|
|
model = model.eval()
|
|
history = []
|
|
for prompt in prompts:
|
|
response, history = model.chat(tokenizer, prompt, history=history)
|
|
print(response)
|
|
assert_model(response)
|
|
|
|
history = []
|
|
for prompt in prompts:
|
|
length = 0
|
|
for response, history in model.stream_chat(tokenizer,
|
|
prompt,
|
|
history=[]):
|
|
print(response[length:], flush=True, end='')
|
|
length = len(response)
|
|
assert_model(response)
|
|
|
|
|
|
class TestBase:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm2_5-7b', 'internlm/internlm2-7b',
|
|
'internlm/internlm2-base-7b', 'internlm/internlm2-20b',
|
|
'internlm/internlm2-base-20b', 'internlm/internlm2-1_8b',
|
|
'internlm/internlm2_5-20b',
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
'usefast',
|
|
[
|
|
True,
|
|
False,
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name, usefast):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True,
|
|
use_fast=usefast)
|
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
|
# it will be loaded as float32 and might cause OOM Error.
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, torch_dtype=torch.float16,
|
|
trust_remote_code=True).cuda()
|
|
for prompt in prompts:
|
|
inputs = tokenizer(prompt, return_tensors='pt')
|
|
for k, v in inputs.items():
|
|
inputs[k] = v.cuda()
|
|
gen_kwargs = {
|
|
'max_length': 128,
|
|
'top_p': 10,
|
|
'temperature': 1.0,
|
|
'do_sample': True,
|
|
'repetition_penalty': 1.0,
|
|
}
|
|
output = model.generate(**inputs, **gen_kwargs)
|
|
output = tokenizer.decode(output[0].tolist(),
|
|
skip_special_tokens=True)
|
|
print(output)
|
|
assert_model(output)
|
|
|
|
|
|
class TestMath:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm2-math-7b', 'internlm/internlm2-math-base-7b',
|
|
'internlm/internlm2-math-plus-1_8b',
|
|
'internlm/internlm2-math-plus-7b'
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
'usefast',
|
|
[
|
|
True,
|
|
False,
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name, usefast):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True,
|
|
use_fast=usefast)
|
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
|
# it will be loaded as float32 and might cause OOM Error.
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, trust_remote_code=True,
|
|
torch_dtype=torch.float16).cuda()
|
|
model = model.eval()
|
|
model = model.eval()
|
|
response, history = model.chat(tokenizer,
|
|
'1+1=',
|
|
history=[],
|
|
meta_instruction='')
|
|
print(response)
|
|
assert_model(response)
|
|
assert '2' in response
|
|
|
|
|
|
class TestMMModel:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2-7b',
|
|
'internlm/internlm-xcomposer2-7b-4bit'
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
|
# it will be loaded as float32 and might cause OOM Error.
|
|
|
|
if '4bit' in model_name:
|
|
model = InternLMXComposer2QForCausalLM.from_quantized(
|
|
model_name, trust_remote_code=True, device='cuda:0').eval()
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name, torch_dtype=torch.float32,
|
|
trust_remote_code=True).cuda()
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model = model.eval()
|
|
img_path_list = [
|
|
'tests/panda.jpg',
|
|
'tests/bamboo.jpeg',
|
|
]
|
|
images = []
|
|
for img_path in img_path_list:
|
|
image = Image.open(img_path).convert('RGB')
|
|
image = model.vis_processor(image)
|
|
images.append(image)
|
|
image = torch.stack(images)
|
|
query = '<ImageHere> <ImageHere>please write an article ' \
|
|
+ 'based on the images. Title: my favorite animal.'
|
|
with torch.cuda.amp.autocast():
|
|
response, history = model.chat(tokenizer,
|
|
query=query,
|
|
image=image,
|
|
history=[],
|
|
do_sample=False)
|
|
print(response)
|
|
assert len(response) != 0
|
|
assert ' panda' in response
|
|
|
|
query = '<ImageHere> <ImageHere>请根据图片写一篇作文:我最喜欢的小动物。' \
|
|
+ '要求:选准角度,确定立意,明确文体,自拟标题。'
|
|
with torch.cuda.amp.autocast():
|
|
response, history = model.chat(tokenizer,
|
|
query=query,
|
|
image=image,
|
|
history=[],
|
|
do_sample=False)
|
|
print(response)
|
|
assert len(response) != 0
|
|
assert '熊猫' in response
|
|
|
|
|
|
class TestMMVlModel:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2-vl-7b',
|
|
'internlm/internlm-xcomposer2-vl-7b-4bit'
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
if '4bit' in model_name:
|
|
model = InternLMXComposer2QForCausalLM.from_quantized(
|
|
model_name, trust_remote_code=True, device='cuda:0').eval()
|
|
else:
|
|
model = AutoModel.from_pretrained(
|
|
model_name, trust_remote_code=True).cuda().eval()
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
|
|
query = '<ImageHere>Please describe this image in detail.'
|
|
image = 'tests/image.webp'
|
|
with torch.cuda.amp.autocast():
|
|
response, _ = model.chat(tokenizer,
|
|
query=query,
|
|
image=image,
|
|
history=[],
|
|
do_sample=False)
|
|
print(response)
|
|
assert len(response) != 0
|
|
assert 'Oscar Wilde' in response
|
|
assert 'Live life with no excuses, travel with no regret' in response
|
|
|
|
|
|
class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
|
|
layers_block_name = 'model.layers'
|
|
outside_layer_modules = [
|
|
'vit',
|
|
'vision_proj',
|
|
'model.tok_embeddings',
|
|
'model.norm',
|
|
'output',
|
|
]
|
|
inside_layer_modules = [
|
|
['attention.wqkv.linear'],
|
|
['attention.wo.linear'],
|
|
['feed_forward.w1.linear', 'feed_forward.w3.linear'],
|
|
['feed_forward.w2.linear'],
|
|
]
|
|
|
|
|
|
class TestReward:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm2-1_8b-reward', 'internlm/internlm2-7b-reward',
|
|
'internlm/internlm2-20b-reward'
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
'usefast',
|
|
[
|
|
True,
|
|
False,
|
|
],
|
|
)
|
|
def test_demo_default(self, model_name, usefast):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True,
|
|
use_fast=usefast)
|
|
model = AutoModel.from_pretrained(
|
|
model_name,
|
|
device_map='cuda',
|
|
torch_dtype=torch.float16,
|
|
trust_remote_code=True,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
|
|
chat_1 = [{
|
|
'role': 'user',
|
|
'content': "Hello! What's your name?"
|
|
}, {
|
|
'role':
|
|
'assistant',
|
|
'content':
|
|
'I am InternLM2! A helpful AI assistant. What can I do for you?'
|
|
}]
|
|
chat_2 = [{
|
|
'role': 'user',
|
|
'content': "Hello! What's your name?"
|
|
}, {
|
|
'role': 'assistant',
|
|
'content': 'I have no idea.'
|
|
}]
|
|
|
|
# get reward score for a single chat
|
|
score1 = model.get_score(tokenizer, chat_1)
|
|
score2 = model.get_score(tokenizer, chat_2)
|
|
print('score1: ', score1)
|
|
print('score2: ', score2)
|
|
assert score1 > 0
|
|
assert score2 < 0
|
|
|
|
# batch inference, get multiple scores at once
|
|
scores = model.get_scores(tokenizer, [chat_1, chat_2])
|
|
print('scores: ', scores)
|
|
assert scores[0] > 0
|
|
assert scores[1] < 0
|
|
|
|
# compare whether chat_1 is better than chat_2
|
|
compare_res = model.compare(tokenizer, chat_1, chat_2)
|
|
print('compare_res: ', compare_res)
|
|
assert compare_res
|
|
# >>> compare_res: True
|
|
|
|
# rank multiple chats, it will return the ranking index of each chat
|
|
# the chat with the highest score will have ranking index as 0
|
|
rank_res = model.rank(tokenizer, [chat_1, chat_2])
|
|
print('rank_res: ', rank_res) # lower index means higher score
|
|
# >>> rank_res: [0, 1]
|
|
assert rank_res[0] == 0
|
|
assert rank_res[1] == 1
|
|
|
|
|
|
class TestXcomposer2d5Model:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_video_understanding(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval().half()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = 'Here are some frames of a video. Describe this video in detail' # noqa: F401, E501
|
|
image = [
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/liuxiang.mp4',
|
|
]
|
|
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response, his = model.chat(tokenizer,
|
|
query,
|
|
image,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
use_meta=True)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert 'athlete' in response.lower()
|
|
|
|
query = 'tell me the athlete code of Liu Xiang'
|
|
image = [
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/liuxiang.mp4',
|
|
]
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response, _ = model.chat(tokenizer,
|
|
query,
|
|
image,
|
|
history=his,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
use_meta=True)
|
|
print(response)
|
|
assert len(response) > 10
|
|
assert '1363' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_multi_image_understanding(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval().half()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = 'Image1 <ImageHere>; Image2 <ImageHere>; Image3 <ImageHere>; I want to buy a car from the three given cars, analyze their advantages and weaknesses one by one' # noqa: F401, E501
|
|
image = [
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/cars1.jpg',
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/cars2.jpg',
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/cars3.jpg',
|
|
]
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response, his = model.chat(tokenizer,
|
|
query,
|
|
image,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
use_meta=True)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert 'car' in response.lower()
|
|
|
|
query = 'Image4 <ImageHere>; How about the car in Image4'
|
|
image.append(
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/cars4.jpg')
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response, _ = model.chat(tokenizer,
|
|
query,
|
|
image,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
history=his,
|
|
use_meta=True)
|
|
print(response)
|
|
assert len(response) > 10
|
|
assert 'ferrari' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_high_resolution_default(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval().half()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = 'Analyze the given image in a detail manner'
|
|
image = ['/mnt/petrelfs/qa-caif-cicd/github_runner/examples/dubai.png']
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response, _ = model.chat(tokenizer,
|
|
query,
|
|
image,
|
|
do_sample=False,
|
|
num_beams=3,
|
|
use_meta=True)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert 'dubai' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_introduce_web_default(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = '''A website for Research institutions. The name is Shanghai
|
|
AI lab. Top Navigation Bar is blue.Below left, an image shows the
|
|
logo of the lab. In the right, there is a passage of text below that
|
|
describes the mission of the laboratory.There are several images to
|
|
show the research projects of Shanghai AI lab.'''
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response = model.write_webpage(
|
|
query,
|
|
seed=202,
|
|
task='Instruction-aware Webpage Generation',
|
|
repetition_penalty=3.0)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert is_html_code(response)
|
|
assert 'href' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_resume_to_webset_default(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
# the input should be a resume in markdown format
|
|
query = '/mnt/petrelfs/qa-caif-cicd/github_runner/examples/resume.md'
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response = model.resume_2_webpage(query,
|
|
seed=202,
|
|
repetition_penalty=3.0)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert is_html_code(response)
|
|
assert 'href' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_screen_to_webset_default(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = 'Generate the HTML code of this web image with Tailwind CSS.'
|
|
image = [
|
|
'/mnt/petrelfs/qa-caif-cicd/github_runner/examples/screenshot.jpg'
|
|
]
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response = model.screen_2_webpage(query,
|
|
image,
|
|
seed=202,
|
|
repetition_penalty=3.0)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert is_html_code(response)
|
|
assert 'href' in response.lower()
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
[
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
],
|
|
)
|
|
def test_write_artical_default(self, model_name):
|
|
torch.set_grad_enabled(False)
|
|
|
|
# init model and tokenizer
|
|
model = AutoModel.from_pretrained(
|
|
'internlm/internlm-xcomposer2d5-7b',
|
|
torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True).cuda().eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
'internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
|
|
model.tokenizer = tokenizer
|
|
|
|
query = '''阅读下面的材料,根据要求写作。 电影《长安三万里》的出现让人感慨,影片并未将重点全落在大唐风华上,
|
|
也展现了恢弘气象的阴暗面,即旧门阀的资源垄断、朝政的日益衰败与青年才俊的壮志难酬。高适仕进无门,只能回乡>沉潜修行。
|
|
李白虽得玉真公主举荐,擢入翰林,但他只是成为唐玄宗的御用文人,不能真正实现有益于朝政的志意。然而,片中高潮部分《将进酒》一节,
|
|
人至中年、挂着肚腩的李白引众人乘仙鹤上天,一路从水面、瀑布飞升至银河进入仙>宫,李白狂奔着与仙人们碰杯,最后大家纵身飞向漩涡般的九重天。
|
|
肉身的微贱、世路的“天生我材必有用,坎坷,拘不住精神的高蹈。“天生我材必有用,千金散尽还复来。” 古往今来,身处闲顿、遭受挫折、被病痛折磨,
|
|
很多人都曾经历>了人生的“失意”,却反而成就了他们“诗意”的人生。对正在追求人生价值的当代青年来说,如何对待人生中的缺憾和困顿?诗意人生中又
|
|
有怎样的自我坚守和自我认同?请结合“失意”与“诗意”这两个关键词写一篇文章。 要求:选准角度,确定>立意,明确文体,自拟标题;不要套作,不得抄
|
|
袭;不得泄露个人信息;不少于 800 字。'''
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response = model.write_artical(query, seed=8192)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert '。' in response and '诗' in response
|
|
|
|
query = '''Please write a blog based on the title: French Pastries:
|
|
A Sweet Indulgence'''
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
response = model.write_artical(query, seed=8192)
|
|
print(response)
|
|
assert len(response) > 100
|
|
assert ' ' in response and 'a' in response
|
|
|
|
|
|
def is_html_code(html_code):
|
|
try:
|
|
soup = BeautifulSoup(html_code, 'lxml')
|
|
if soup.find('html'):
|
|
print('HTML appears to be well-formed.')
|
|
return True
|
|
else:
|
|
print('There was an issue with the HTML structure.')
|
|
return False
|
|
except Exception as e:
|
|
print('Error parsing HTML:', str(e))
|
|
return False
|
|
|
|
|
|
class TestChatAwq:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model_name',
|
|
['internlm/internlm2-chat-20b-4bits'],
|
|
)
|
|
def test_demo_default(self, model_name):
|
|
engine_config = TurbomindEngineConfig(model_format='awq')
|
|
pipe = pipeline('internlm/internlm2-chat-20b-4bits',
|
|
backend_config=engine_config)
|
|
responses = pipe(['Hi, pls intro yourself', 'Shanghai is'])
|
|
print(responses)
|
|
for response in responses:
|
|
assert_model(response.text)
|