#!/usr/bin/env python # -*- encoding: utf-8 -*- import math import random from typing import Iterator, TypeVar import numpy as np import torch from torch.utils.data import DataLoader, Dataset, Sampler from internlm.core.context import ParallelMode from internlm.core.context import global_context as gpc from internlm.utils.logger import get_logger logger = get_logger(__file__) T_co = TypeVar("T_co", covariant=True) class DataParallelSampler(Sampler): """A data sampler for distributed data parallelism. Args: dataset (:class:`torch.utils.data.Dataset`): The Dataset for sampling. shuffle (bool, optional): Whether to shuffle data, defaults to False. seed (int, optional): The random seed used for sampling, defaults to 0. drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller, defaults to False. """ def __init__( self, dataset: Dataset, shuffle: bool = False, seed: int = 0, drop_last: bool = False, ) -> None: self.dataset = dataset self.num_replicas = gpc.get_world_size(ParallelMode.DATA) self.rank = gpc.get_local_rank(ParallelMode.DATA) self.epoch = 0 self.drop_last = drop_last # If the dataset length is evenly divisible by # of replicas, then there # is no need to drop any data, since the dataset will be split equally. # type: ignore[arg-type] if self.drop_last and len(self.dataset) % self.num_replicas != 0: # Split to nearest available length that is evenly divisible. # This is to ensure each rank receives the same amount of data when # using this Sampler. self.num_samples = math.ceil( # `type:ignore` is required because Dataset cannot provide a default __len__ # see NOTE in pytorch/torch/utils/data/sampler.py (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] ) else: self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type] self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle self.seed = seed def __iter__(self) -> Iterator[T_co]: if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) # type: ignore[arg-type] indices = torch.randperm(len(self.dataset), generator=g).tolist() # update for next epoch so that there is no need to call # set_epoch manually self.epoch += 1 else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[: self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank : self.total_size : self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self) -> int: return self.num_samples def set_epoch(self, epoch: int) -> None: r"""Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas use a different random ordering for each epoch. Otherwise, the next iteration of this sampler will yield the same ordering. Args: epoch (int): Epoch number. """ self.epoch = epoch def get_dpsampler_dataloader( dataset, shuffle=False, seed=1024, add_sampler=True, drop_last=False, pin_memory=False, num_workers=0, **kwargs, ): r"""Set up a deterministic dataloader (also configure seed workers, samplers and whether shuffle or not) Note: When pipeline parallel is enabled, shuffle cannot be True as it will result in mismatch between input data on the 1st stage and label on the last stage. Args: dataset (:class:`torch.utils.data.Dataset`): The dataset to be loaded. shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False. seed (int, optional): Random worker seed for sampling, defaults to 1024. add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True. drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller, defaults to False. pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False. num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0. kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in `DataLoader `_. Returns: :class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing. """ _kwargs = kwargs.copy() if add_sampler and gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1: sampler = DataParallelSampler(dataset, shuffle=shuffle, drop_last=drop_last) else: sampler = None # Deterministic dataloader def seed_worker(): worker_seed = seed np.random.seed(worker_seed) torch.manual_seed(worker_seed) random.seed(worker_seed) if sampler is None: return DataLoader( dataset, worker_init_fn=seed_worker, shuffle=shuffle, drop_last=drop_last, pin_memory=pin_memory, num_workers=num_workers, **_kwargs, ) else: return DataLoader( dataset, sampler=sampler, worker_init_fn=seed_worker, drop_last=drop_last, pin_memory=pin_memory, num_workers=num_workers, **_kwargs, ) class StaticBatchSampler: """ A static batch sampler that generates batches with a fixed micro-batch size. Args: num_samples (int): The total number of samples in the dataset. batch_size (int): The batch size for the current rank. Defaults to 192. rampup_batch_size (str): A string with three space-separated integers representing the starting batch size, the increment, and the number of steps between each increment. For example, "192 24 8" means that the batch size starts at 192 and increases by 24 every 8 steps. Defaults to "6 2 8", which corresponds to a batch size of 2 for the first 6 steps. micro_bsz (int): The micro-batch size. Defaults to 2. seed (int): The random seed for shuffling the indices. Defaults to 0. drop_last (bool): If True, drop the last incomplete batch. Currently only supports True. Defaults to True. data_rank (int): The rank of the current process in the data parallel group. Defaults to 0. data_world_size (int): The number of processes in the data parallel group. Defaults to 1. """ def __init__( self, datasets, batch_size=192, rampup_batch_size="6 2 8", micro_bsz=2, seed=0, drop_last=True, data_rank=0, data_world_size=1, ): assert drop_last is True, "Currently only support drop last" if rampup_batch_size: # In the process increase to batch_size start_bsz, bsz_incre, incre_every = map(int, rampup_batch_size.split()) else: start_bsz, bsz_incre, incre_every = batch_size, batch_size, 1 self.raw_rampup_batch_size = rampup_batch_size self.start_bsz = start_bsz self.bsz_incre = bsz_incre self.incre_every = incre_every if gpc.is_initialized(ParallelMode.PIPELINE): assert ( batch_size - self.start_bsz ) % self.bsz_incre == 0, f"{batch_size} - {self.start_bsz} should be multiple of {self.bsz_incre}" assert ( self.start_bsz // micro_bsz >= 4 ), f"Must have more start samples:`{self.start_bsz}` with micro_bsz:\ `{micro_bsz}`, so that the pipeline can run correctly" assert batch_size % micro_bsz == 0, f"batch_size({batch_size}) should be multiple of micro_bsz({micro_bsz})" assert ( self.start_bsz % micro_bsz == 0 ), f"start_bsz({self.start_bsz}) should be multiple of micro_bsz({micro_bsz})" assert ( self.bsz_incre % micro_bsz == 0 ), f"bsz_incre({self.bsz_incre}) should be multiple of micro_bsz({micro_bsz})" self.batch_size = batch_size self.epoch = 0 self.seed = seed self.rng = np.random.RandomState(seed) self.batch_count = 0 self.micro_bsz = micro_bsz self.data_rank = data_rank self.data_world_size = data_world_size self.num_consumed_samples_in_epoch = 0 self.datasets = datasets self.num_samples = sum([len(ds) for ds in datasets]) self.get_indices() # get data def get_indices(self, old_indices=None): if old_indices is not None: assert ( len(old_indices) <= self.num_samples ), f"The checkpoint has {len(old_indices)} samples, \ while the new restart use less samples ({self.num_samples})" else: old_indices = np.array([]) # indices includes len(old_indices) but not self.num_samples indices = np.arange(len(old_indices), self.num_samples) self.rng_state = self.rng.get_state() self.rng.shuffle(indices) # Need to consider drop_last ramp_steps = (self.batch_size - self.start_bsz) // self.bsz_incre if self.batch_count < ramp_steps * self.incre_every: rampup_samples = 0 for i in range(ramp_steps): rampup_samples += (i * self.bsz_incre + self.start_bsz) * self.incre_every assert ( rampup_samples * self.data_world_size <= self.num_samples ), f"Too much rampup samples: \ {rampup_samples*self.data_world_size} Vs. self.num_samples: {self.num_samples}" num_samples = (self.num_samples - rampup_samples * self.data_world_size) // ( self.batch_size * self.data_world_size ) num_samples = num_samples * self.batch_size * self.data_world_size + rampup_samples * self.data_world_size else: num_samples = self.num_samples // (self.batch_size * self.data_world_size) num_samples = num_samples * self.batch_size * self.data_world_size indices = np.concatenate([old_indices, indices]).astype(int) # It needs to be spliced with the previous indices = indices[:num_samples] self.indices = indices assert len(self.indices) >= self.batch_size, "The number of samples should be larger than batch_size" self.num_consumed_samples_in_epoch = 0 def set_epoch(self, epoch): self.epoch = epoch self.rng = np.random.RandomState(self.seed + self.epoch) def __len__(self): ramp_steps = (self.batch_size - self.start_bsz) // self.bsz_incre if self.batch_count < ramp_steps * self.incre_every: rampup_samples = 0 for i in range(ramp_steps): rampup_samples += (i * self.bsz_incre + self.start_bsz) * self.incre_every assert ( rampup_samples * self.data_world_size <= self.num_samples ), f"Too much rampup samples: {rampup_samples*self.data_world_size} \ Vs. self.num_samples: {self.num_samples}" num_batches = (self.num_samples - rampup_samples * self.data_world_size) // self.batch_size num_batches = num_batches // self.data_world_size + self.incre_every * ramp_steps else: num_batches = self.num_samples // self.batch_size // self.data_world_size return num_batches def __iter__(self): indices = self.indices[self.data_rank :: self.data_world_size] while self.num_consumed_samples_in_epoch < len(indices): batch_rampup_idx = self.batch_count // self.incre_every cur_batch_size = batch_rampup_idx * self.bsz_incre + self.start_bsz cur_batch_size = min(cur_batch_size, self.batch_size) batch = indices[self.num_consumed_samples_in_epoch : self.num_consumed_samples_in_epoch + cur_batch_size] yield batch self.num_consumed_samples_in_epoch += len(batch) # Consider multiple processes. self.batch_count += 1 self.get_indices() # get a new round def state_dict(self): states = { "batch_size": self.batch_size, "raw_rampup_batch_size": self.raw_rampup_batch_size, "rng_state": self.rng_state, "epoch": self.epoch, "seed": self.seed, "data_world_size": self.data_world_size, "num_consumed_samples_in_epoch": self.num_consumed_samples_in_epoch, "batch_count": self.batch_count, # The batch_count here is due to the existence of multiple processes, # the batch may be oversent, and it needs to be overwritten by the external batch_count "indices": self.indices, # The sequence used to breakpoint retraining is the same as before } return states def load_state_dict(self, states): for name in ("data_world_size", "raw_rampup_batch_size", "seed"): # 'batch_size' assert states[name] == getattr(self, name), (name, states[name], getattr(self, name)) # should not change self.rng.set_state(states["rng_state"]) self.get_indices(old_indices=None) # Regenerate indices based on random state self.epoch = states["epoch"] self.batch_count = states["batch_count"] self.num_consumed_samples_in_epoch = states["num_consumed_samples_in_epoch"] def copy(self): copy_sampler = StaticBatchSampler( self.datasets, self.batch_size, self.raw_rampup_batch_size, self.micro_bsz, self.seed, drop_last=True, data_rank=self.data_rank, data_world_size=self.data_world_size, ) copy_sampler.load_state_dict(self.state_dict()) return copy_sampler