#!/usr/bin/env python # -*- encoding: utf-8 -*- import math from torch import Tensor, nn def scaled_init_method_normal(sigma: float = 1.0, num_layers: int = 1): """Init method based on N(0, sigma/sqrt(2*num_layers).""" std = sigma / math.sqrt(2.0 * num_layers) def init_(tensor): return nn.init.normal_(tensor, mean=0.0, std=std) return init_ def normal_(mean: float = 0.0, std: float = 1.0): r"""Return the initializer filling the input Tensor with values drawn from the normal distribution .. math:: \mathcal{N}(\text{mean}, \text{std}^2) Args: mean (float): the mean of the normal distribution. Defaults 0.0. std (float): the standard deviation of the normal distribution. Defaults 1.0. """ def initializer(tensor: Tensor): return nn.init.normal_(tensor, mean, std) return initializer def scaled_init_method_uniform(sigma: float = 1.0, num_layers: int = 1): """Init method based on p(x)=Uniform(-a, a) where std(x)=sigma/sqrt(2*num_layers).""" std = sigma / math.sqrt(2.0 * num_layers) a = math.sqrt(3.0 * std) def init_(tensor): return nn.init.uniform_(tensor, -a, a) return init_ def uniform_(mean: float = 0.0, std: float = 1.0): r"""Return the initializer filling the input Tensor with values drawn from the uniform distribution .. math:: \mathcal{U}(mean-a, mean+a), where a satisfies \mathcal{U}_{std}=std. Args: mean (float): the mean of the uniform distribution. Defaults 0.0. std (float): the standard deviation of the uniform distribution. Defaults 1.0. """ a = math.sqrt(3.0 * std) def initializer(tensor: Tensor): return nn.init.uniform_(tensor, mean - a, mean + a) return initializer