import multiprocessing as mp import pytest import torch from internlm.core.context import ParallelMode from internlm.core.context import global_context as gpc from internlm.core.context.parallel_context import Config from tests.test_core.utils import ( MlpModel, MyLoss, build_environment, init_model_and_optim, loose_close, seed_all, ) config = Config( dict( gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")], parallel=dict( zero1=dict(size=1, fsdp=False), pipeline=dict(size=8, interleaved_overlap=False), sequence_parallel=False, tensor=1, ), model_type="INTERNLM", data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999), model=dict( dtype=torch.bfloat16, num_chunks=2, use_flash_attn=True, ), resume_tb_folder="", tensorboard_folder="", alert_address=None, monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)), grad_scaler=dict( fp16=dict( initial_scale=1, min_scale=1, growth_interval=1, ), growth_factor=1.1, backoff_factor=0.9, max_scale=1, hysteresis=1, ), adam=dict( lr=1e-4, adam_beta1=0.9, adam_beta2=0.95, adam_beta2_c=0, adam_eps=1e-8, weight_decay=0.01, ), hybrid_zero_optimizer=dict( overlap_sync_grad=False, overlap_sync_param=False, reduce_bucket_size=512 * 1024 * 1024, clip_grad_norm=1.0, ), beta2_scheduler=dict( init_beta2=0.95, c=0, cur_iter=-1, ), lr_scheduler=dict( total_steps=100, init_steps=0, warmup_ratio=0.01, eta_min=1e-5, last_epoch=-1, ), ) ) def exam_pipeline_parallel(args): # init rank, world_size, micro_num, num_chunks, interleaved_overlap = args config.data.micro_num = micro_num config.model.num_chunks = num_chunks config.parallel.pipeline.interleaved_overlap = interleaved_overlap build_environment(rank, world_size, config) device = torch.device(f"cuda:{rank}") dtype = config.model["dtype"] seq_len = gpc.config.data.seq_len # set seed seed_all(1024) engine, scheduler = init_model_and_optim(32, num_chunks, dtype, micro_num, interleaved_overlap, tensor_shape=[1, 8]) if scheduler is None: return scheduler.pre_processing(engine) engine.train() # create input x_list = [] y_list = [] for _ in range(micro_num): x_list.append(list(range(seq_len))) y_list.append(list(range(seq_len))) xs = torch.tensor(x_list).to(device).to(dtype) yx = torch.tensor(y_list).to(device).to(dtype) input_list = [{"input_ids": xs}, yx] # pp forward and backward output_list = [] for _ in range(10): output, _, loss = scheduler.forward_backward_step( engine, input_list, forward_only=False, return_loss=True, return_output_label=True ) output_list.append(output) engine.step() # torch related if gpc.is_last_rank(ParallelMode.PIPELINE): torch_xs = torch.tensor(x_list).to(device).to(torch.float32) torch_ys = torch.tensor(y_list).to(device).to(torch.float32) torch_model = MlpModel(0, 32, "torch").to(device) torch_optimizer = torch.optim.AdamW( params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}], lr=config.adam.lr, betas=(config.adam.adam_beta1, config.adam.adam_beta2), eps=config.adam.adam_eps, ) # check only forward logits first_output = output_list[0] for i in range(1, 10): assert torch.equal(first_output, output_list[i]) # check output torch_output = torch_model(input_ids=torch_xs) # pylint: disable=E1102 loose_close(torch_output, output, dtype=dtype) torch_criterion = MyLoss().to(torch.float32) torch_loss = torch_criterion(torch_output, torch_ys) / micro_num # pylint: disable=E1102 torch_loss.backward() torch_optimizer.step() # check loss loose_close(torch_loss, loss[0], dtype=dtype) @pytest.mark.parametrize("micro_num", [4, 8, 16]) @pytest.mark.parametrize("num_chunks", [1, 2, 4]) @pytest.mark.parametrize("interleaved_overlap", [True, False]) def test_pipeline_parallel(micro_num, num_chunks, interleaved_overlap): ctx = mp.get_context("spawn") with ctx.Pool(processes=8) as pool: pool.map( exam_pipeline_parallel, [[rank, 8, micro_num, num_chunks, interleaved_overlap] for rank in range(8)], ) pool.close() pool.join() if __name__ == "__main__": pytest.main(["-s", "-q", "test_pipeline.py"])