#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from internlm.core.context import global_context as gpc DATASET_TYPE_IDS_MAP = {"en": 0, "cn": 1} def get_dataset_type_id(path): import re match_idxes = [] for key, idx in DATASET_TYPE_IDS_MAP.items(): if re.search(rf"/[z_]*{key}/", path): match_idxes.append(idx) assert len(match_idxes) == 1, f"{path}, match_idxes should be 1, but got {match_idxes} from {DATASET_TYPE_IDS_MAP}" return match_idxes[0] def unpack_data(input_ids, cu_seqlens): """ input_ids: (n, packed_length) Return: output: (batch_size, max_length) """ bsz = input_ids.shape[0] num_sequence = gpc.config.data["micro_bsz"] outputs = torch.zeros(bsz, num_sequence, gpc.config.data.seq_len, device=input_ids.device, dtype=input_ids.dtype) for i in range(bsz): output = torch.zeros(num_sequence, gpc.config.data.seq_len, device=input_ids.device, dtype=input_ids.dtype) cu_seqlens_slice = cu_seqlens[i] for j in range(num_sequence): seq_length = cu_seqlens_slice[j + 1] - cu_seqlens_slice[j] output[j, 0:seq_length] = input_ids[0, cu_seqlens_slice[j] : cu_seqlens_slice[j + 1]] outputs[i] = output if bsz == 1: outputs = outputs.squeeze(0) return outputs