import argparse import json import sentencepiece as spm from tqdm import tqdm import os.path as osp from pathlib import Path import numpy as np def process(dataset_path, sp_model): """Process data sample from input dataset Args: dataset_path (str): Path of dataset json file. sp_model (str): Path of tokenizer. Yields: tuple: dumped processed data sample and length of tokens. """ dataset = json.load(open(dataset_path)) for data in dataset: yield tokenize(get_chat_format_data(data), sp_model) def get_chat_format_data(ori_data): """Format original data Args: ori_data (dict): input data sample. Returns: dict: data sample with chat format. """ input_str = ori_data['input'] instruction_str = ori_data['instruction'] output_str = ori_data['output'] data = dict() if input_str != "": data['user'] = f'<|User|>:{instruction_str}\n{input_str}' else: data['user'] = f'<|User|>:{instruction_str}' data['bot'] = f'<|Bot|>:{output_str}' return data def tokenize(sample, sp_model): """Tokenize input dataset Args: sample (dict): Input data sample. sp_model (str): Path of tokenizer. Returns: tuple: dumped processed data sample and length of tokens. """ special_tokens_map = {'': 103167, '': 103166, 'nl_id': 13} token_ids = [sp_model.bos_id()] human_s = sample['user'] ass_s = sample['bot'] human_ids = sp_model.encode(human_s) + [ special_tokens_map[""], special_tokens_map['nl_id'] ] human_ids_ignore = [-token_id for token_id in human_ids] ass_template_ids = sp_model.encode('<|Assistant|>:') ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids] ass_ids = ass_template_ids_ignore + sp_model.encode(ass_s[14:]) + [ special_tokens_map[""], special_tokens_map['nl_id'] ] token_ids += human_ids_ignore + ass_ids if len(token_ids) > 2047: token_ids = token_ids[:2047] token_ids += [sp_model.eos_id()] line = str.encode(json.dumps({'tokens': token_ids}) + '\n') return line, len(token_ids) def dump_bin_meta_bin(samples, path, split_ratio=0.1): """Dump processed dataset Args: samples (dict): Input data sample. path (str): Path for output dataset. split_ratio (float): Ratio for validation dataset splitting. Default to: 0.1. Returns: tuple: number of train/valid tokens of processed dataset, number of train/valid samples of processed dataset. """ train_path = osp.join(path, 'train/en/') valid_path = osp.join(path, 'valid/en/') train_dir = Path(train_path) valid_dir = Path(valid_path) train_dir.mkdir(exist_ok=True, parents=True) valid_dir.mkdir(exist_ok=True, parents=True) train_f = open(train_dir.joinpath('dataset.bin'), 'wb') valid_f = open(valid_dir.joinpath('dataset.bin'), 'wb') train_tokens = 0 valid_tokens = 0 last_train_position = 0 last_valid_position = 0 train_samples = 0 valid_samples = 0 train_meta = [] valid_meta = [] sample_length = len(samples) np.random.seed(0) valid_indices = np.random.choice( range(sample_length), int(sample_length * split_ratio)).tolist() count = -1 for line, token_num in samples: count += 1 if count in valid_indices: valid_tokens += token_num valid_f.write(line) valid_meta.append((last_valid_position, token_num)) last_valid_position += len(line) valid_samples += 1 else: train_tokens += token_num train_f.write(line) train_meta.append((last_train_position, token_num)) last_train_position += len(line) train_samples += 1 train_f.close() valid_f.close() np.save(open(train_dir.joinpath('dataset.bin.meta'), 'wb'), train_meta) np.save(open(valid_dir.joinpath('dataset.bin.meta'), "wb"), valid_meta) return train_tokens, valid_tokens, train_samples, valid_samples if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'dataset_path', type=str, help='path of dataset json file') parser.add_argument( 'output_path', type=str, help='path of processed dataset') parser.add_argument('tokenizer_path', type=str, help='path of tokenizer') parser.add_argument( '--split_ratio', type=float, default=0.1, help='ratio for validation dataset splitting') args = parser.parse_args() sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path) split_ratio = args.split_ratio samples = [] dataset = process(args.dataset_path, sp_model) for sample in tqdm(dataset): samples.append(sample) train_tokens, valid_tokens, train_samples, valid_samples = \ dump_bin_meta_bin(samples, args.output_path, args.split_ratio) print(f'number of train dataset: {train_samples}, ' 'number of train dataset token: {train_tokens}') print(f'number of validation dataset: {valid_samples}, ' 'number of validation dataset token: {valid_tokens}')