## Training Performance
InternLM deeply integrates Flash-Attention, Apex, and other high-performance model operators to improve training efficiency. It achieves efficient overlap of computation and communication, significantly reducing cross-node communication traffic during training by building the Hybrid Zero technique. InternLM supports expanding the 7B model from 8 GPUs to 1024 GPUs, with an acceleration efficiency of up to 90% at the thousand-card scale, a training throughput of over 180 TFLOPS, and an average of over 3600 tokens per GPU per second. The following table shows InternLM's scalability test data at different configurations:
| GPU Number | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
| ---------------- | ---- | ---- | ---- | ---- | ----- | ----- | ----- | ------ |
| TGS (Tokens/GPU/Second) | 4078 | 3939 | 3919 | 3944 | 3928 | 3920 | 3835 | 3625 |
| TFLOPS | 193 | 191 | 188 | 188 | 187 | 185 | 186 | 184 |
We tested the performance of training the 7B model in InternLM using various parallel configurations on a GPU cluster. In each test group, the number of tokens processed per GPU in a single iteration remained consistent. The hardware and parameter configurations used in the tests are shown in the table below:
| Hardware | Model |
| ----------------------- | ----------------------------- |
| GPU | nvidia_a100-sxm4-80gb |
| Memory | 2TB |
| Inter-machine bandwidth | 4 * 100Gb RoCE |
| CPU | 128 core Intel(R) Xeon(R) CPU |
| Hyperparameters | tp=1 | tp=2 |
| --------------- | ---- | ---- |
| micro_num | 4 | 4 |
| micro_bsz | 2 | 4 |
| seq_len | 2048 | 2048 |
The configuration of `zero1` in InternLM determines the allocation range of optimizer states.
- `zero1=-1` indicates that optimizer states are distributed across all data-parallel nodes (equivalent to Deepspeed Zero-1).
- In the case of `zero1=8, tp=1`, optimizer states are distributed within 8 GPUs in a single node, and the optimizer states remain consistent across different nodes.
### Throughput Measurement
Throughput is defined as TGS, the average number of tokens processed per GPU per second. In this test, the training configuration had `pack_sample_into_one=False` and `checkpoint=False`. The test results are shown in the following table. When using `zero1=8, tp=1`, InternLM achieves an acceleration efficiency of `88%` for training the 7B model with a thousand cards.
| Parallel Configuration | 8 GPUs | 16 GPUs | 32 GPUs | 64 GPUs | 128 GPUs | 256 GPUs | 512 GPUs | 1024 GPUs |
| ---------------------- | ------ | ------- | ------- | ------- | -------- | -------- | -------- | --------- |
| (tp=1, zero1=-1) | 4062 | 3842 | 3752 | 3690 | 3571 | 3209 | 2861 | 2271 |
| (tp=1, zero1=8) | 4078 | 3939 | 3919 | 3944 | 3928 | 3920 | 3835 | 3625 |
| (tp=2, zero1=-1) | 3822 | 3595 | 3475 | 3438 | 3308 | 3094 | 2992 | 2785 |
| (tp=2, zero1=4) | 3761 | 3658 | 3655 | 3650 | 3651 | 3653 | 3589 | 3486 |
### FLOPS Testing
The computational workload of model training is based on the FLOPS calculation method described in the [Megatron](https://deepakn94.github.io/assets/papers/megatron-sc21.pdf) paper. To ensure constant FLOPS during training, the test configuration had `pack_sample_into_one=True`, `dtype=torch.bfloat16`.
When `Activation Ckpt` is enabled,the test results are shown in the table below. InternLM can achieve `>180 TFLOPS` for 7B model training with 1024 GPUs.
- TGS: Tokens per GPU per Second
- Global Bsz: The total number of processed tokens with all GPUs in a step
| TP | Zero1 | Pack Sample Into One | Activation Ckpt | GPU Num | Seq Len | Micro Bsz | Micro Num | Global Bsz | TGS | TFLOPS |
|-|-|-|-|-|-|-|-|-|-|-|
| 1 | 8 | TRUE | TRUE | 8 | 2048 | 8 | 1 | 0.125M | 3314 | 193 |
| 1 | 8 | TRUE | TRUE | 16 | 2048 | 8 | 1 | 0.25M | 3268 | 191 |
| 1 | 8 | TRUE | TRUE | 32 | 2048 | 8 | 1 | 0.5M | 3323 | 188 |
| 1 | 8 | TRUE | TRUE | 64 | 2048 | 8 | 1 | 1M | 3217 | 188 |
| 1 | 8 | TRUE | TRUE | 128 | 2048 | 8 | 1 | 2M | 3260 | 187 |
| 1 | 8 | TRUE | TRUE | 256 | 2048 | 8 | 1 | 4M | 3215 | 187 |
| 1 | 8 | TRUE | TRUE | 512 | 2048 | 8 | 1 | 8M | 3199 | 186 |
| 1 | 8 | TRUE | TRUE | 1024 | 2048 | 8 | 1 | 16M | 3163 | 184 |
| 1 | 8 | TRUE | TRUE | 512 | 2048 | 4 | 1 | 4M | 2963 | 173 |
| 1 | 8 | TRUE | TRUE | 1024 | 2048 | 2 | 1 | 4M | 2341 | 136 |
| 1 | 8 | TRUE | TRUE | 1024 | 2048 | 4 | 1 | 8M | 2796 | 160 |
When `Activation Ckpt` is turned off, the test results are as shown in the table below:
| TP | Zero1 | Pack Sample Into One | Activation Ckpt | GPU Num | Seq Len | Micro Bsz | Micro Num | Global Bsz | TGS | TFLOPS |
|-|-|-|-|-|-|-|-|-|-|-|
| 1 | 8 | TRUE | FALSE | 8 | 2048 | 2 | 4 | 0.125M | 4103 | 183 |
| 1 | 8 | TRUE | FALSE | 16 | 2048 | 2 | 4 | 0.25M | 3939 | 177 |
| 1 | 8 | TRUE | FALSE | 32 | 2048 | 2 | 4 | 0.5M | 3919 | 176 |
| 1 | 8 | TRUE | FALSE | 64 | 2048 | 2 | 4 | 1M | 3944 | 174 |
| 1 | 8 | TRUE | FALSE | 128 | 2048 | 2 | 4 | 2M | 3928 | 173 |
| 1 | 8 | TRUE | FALSE | 256 | 2048 | 2 | 4 | 4M | 3920 | 173 |
| 1 | 8 | TRUE | FALSE | 512 | 2048 | 2 | 4 | 8M | 3900 | 173 |
| 1 | 8 | TRUE | FALSE | 1024 | 2048 | 2 | 4 | 16M | 3625 | 160 |
| 1 | 8 | TRUE | FALSE | 512 | 2048 | 2 | 2 | 4M | 3084 | 139 |
| 1 | 8 | TRUE | FALSE | 1024 | 2048 | 2 | 1 | 4M | 2346 | 105 |
| 1 | 8 | TRUE | FALSE | 1024 | 2048 | 2 | 2 | 8M | 2817 | 124 |
### GPU Memory Usage Test
Test configuration:
| Configuration | Description |
| :-------: | :-----: |
| branch | develop |
| tag | v0.2.1dev20231121 |
| GPU | A800 |
| Checkpoint| True |
| micro_bsz | 1 |
| micro_num | 4 |
| dtype | bfloat16|
```python
# InternLM/configs/7B_sft.py
data = dict(
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=1,
...
)
model = dict(
checkpoint=True,
dtype="torch.bfloat16",
...
)
parallel = dict(
zero1=dict(size=8, fsdp=False),
tensor=1,
pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False,
)
```
Pre-training & Fine-tuning test:
|model|Number of GPU|zero1|tp|pp|fsdp|GPU Memory (GB)|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| 7B | 3 | -1 | 1 | 3 |False| 75 |
| 7B | 3 | -1 | 1 | 1 |True | 72 |
| 7B | 4 | -1 | 4 | 1 |True | 52 |
| 7B | 4 | -1 | 4 | 1 |False| 61 |
| 7B | 4 | -1 | 1 | 4 |False| 69 |
| 7B | 4 | -1 | 1 | 1 |True | 56 |
| 7B | 5 | -1 | 1 | 1 |True | 49 |
| 7B | 5 | -1 | 1 | 5 |False| 62 |
| 7B | 6 | -1 | 1 | 1 |True | 39 |
| 7B | 6 | -1 | 2 | 1 |True | 38 |
| 7B | 6 | -1 | 1 | 6 |False| 56 |
| 20B | 8 | -1 | 1 | 1 |True | 78 |
| 20B | 8 | -1 | 8 | 1 |True | 71 |
| 20B | 16 | -1 | 1 | 1 |True | 40 |
| 20B | 16 | -1 | 8 | 1 |True | 39 |
| 20B | 16 | -1 | 1 | 16 |False| 52 |
Web_demo test:
|model|GPU|GPU Memory (GB)|System Memory (MB)|
|:-:|:-:|:-:|:-:|
| 7B | A800 | 14.5 | 2465 |
| 20B | A800 | 39 | 9547 |