import os import shutil from subprocess import PIPE, STDOUT, Popen import pytest import torch from internlm.core.context import global_context as gpc from internlm.core.context.parallel_context import Config from internlm.core.trainer import TrainState from internlm.solver.optimizer.hybrid_zero_optim import HybridZeroOptimizer from internlm.utils.common import SingletonMeta from internlm.utils.model_checkpoint import CheckpointManager from internlm.utils.storage_manager import wait_async_upload_finish from tests.test_utils.common_fixture import ( # noqa # pylint: disable=unused-import init_dist_and_model, reset_singletons, ) TOTAL_STEP = 6 CKPT_EVERY = 4 SNPASHOT_EVERY = 2 OSS_NAME = os.environ["OSS_BUCKET_NAME"] OSS_IP = os.environ["OSS_IP"] USER = os.environ["USER"] JOB_NAME = "CI_TEST" LOCAL_SAVE_PATH = "local:local_ckpt" BOTO_SAVE_PATH = f"boto3:s3://{OSS_NAME}.{OSS_IP}/{USER}/{JOB_NAME}" BOTO_SAVE_PATH_NO_PRFIX = f"s3://{OSS_NAME}.{OSS_IP}/{USER}/{JOB_NAME}/" ASYNC_TMP_FOLDER = "./async_tmp_folder" def del_tmp_file(): try: shutil.rmtree(ASYNC_TMP_FOLDER, ignore_errors=True) except FileNotFoundError: pass try: shutil.rmtree(LOCAL_SAVE_PATH.split(":")[1], ignore_errors=True) except FileNotFoundError: pass try: cmd = r"/mnt/petrelfs/share/sensesync --dryrun --deleteSrc cp " + BOTO_SAVE_PATH_NO_PRFIX + " / " with Popen(cmd, stdout=PIPE, stderr=STDOUT, shell=True) as output: results, presults = "", "" for line in iter(output.stdout.readline, b""): results += str(line.rstrip()) presults += line.rstrip().decode() + "\n" print(presults, flush=True) except FileNotFoundError: pass ckpt_config_list = [ # Old interface format dict( enable_save_ckpt=True, save_ckpt_folder=BOTO_SAVE_PATH, load_optimizer=True, checkpoint_every=CKPT_EVERY, async_upload=True, async_upload_tmp_folder=ASYNC_TMP_FOLDER, snapshot_ckpt_folder="/".join([BOTO_SAVE_PATH, "snapshot"]), oss_snapshot_freq=SNPASHOT_EVERY, stop_file_path=None, load_model_only_folder=None, load_given_ckpt=False, load_ckpt_folder=None, is_old_api=True, ), # Old interface format dict( enable_save_ckpt=True, save_ckpt_folder=LOCAL_SAVE_PATH, load_optimizer=True, checkpoint_every=CKPT_EVERY, async_upload=False, async_upload_tmp_folder=ASYNC_TMP_FOLDER, snapshot_ckpt_folder="/".join([LOCAL_SAVE_PATH, "snapshot"]), oss_snapshot_freq=SNPASHOT_EVERY, stop_file_path=None, load_model_only_folder=None, load_given_ckpt=False, load_ckpt_folder=None, is_old_api=True, ), # New interface format dict( enable_save_ckpt=True, save_ckpt_folder=BOTO_SAVE_PATH, checkpoint_every=CKPT_EVERY, async_upload=True, async_upload_tmp_folder=ASYNC_TMP_FOLDER, oss_snapshot_freq=SNPASHOT_EVERY, stop_file_path=None, is_old_api=False, auto_resume=True, ), dict( enable_save_ckpt=True, save_ckpt_folder=LOCAL_SAVE_PATH, checkpoint_every=CKPT_EVERY, async_upload=False, async_upload_tmp_folder=ASYNC_TMP_FOLDER, oss_snapshot_freq=SNPASHOT_EVERY, stop_file_path=None, load_ckpt_folder=None, is_old_api=False, auto_resume=True, ), ] def overwrite_optim_state(optim, set_value): if isinstance(optim, HybridZeroOptimizer): for group_id, p in optim._fp32_flat_param_groups_of_current_rank.items(): if optim._zero_local_rank not in optim.param_group_no_params_ranks[group_id]: # p.copy_(torch.full_like(p, set_value, dtype=p.dtype)) p.data.fill_(set_value) for group_id in range(len(optim._fp16_param_groups)): if optim._zero_local_rank not in optim.param_group_no_params_ranks[group_id]: fp16_p = optim._param_store.get_flat_fp16_param_by_rank_group( rank=optim._zero_local_rank, group_id=group_id ) fp16_p.fill_(set_value) else: for group in optim.param_groups: for p in group["params"]: # p.copy_(torch.full_like(p, set_value, dtype=p.dtype)) p.data.fill_(set_value) def compare_optim_state(optim1, optim2): re = True if isinstance(optim1, HybridZeroOptimizer): fp32_buff1 = optim1._fp32_flat_param_groups_of_current_rank fp32_buff2 = optim2._fp32_flat_param_groups_of_current_rank for group_id_1, group_id_2 in zip(fp32_buff1, fp32_buff2): re &= group_id_1 == group_id_2 if optim1.zero_local_rank not in optim1.param_group_no_params_ranks[group_id_1]: re &= torch.equal(fp32_buff1[group_id_1], fp32_buff1[group_id_2]) else: for group1, group2 in zip(optim1.param_groups, optim2.param_groups): for p1, p2 in zip(group1["params"], group2["params"]): re &= torch.equal(p1, p2) return re def compare_optim_value(optim, value): re = True if isinstance(optim, HybridZeroOptimizer): for group_id, p in optim._fp32_flat_param_groups_of_current_rank.items(): if optim._zero_local_rank not in optim.param_group_no_params_ranks[group_id]: re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype)) for group_id in range(len(optim._fp16_param_groups)): if optim._zero_local_rank not in optim.param_group_no_params_ranks[group_id]: fp16_p = optim._param_store.get_flat_fp16_param_by_rank_group( rank=optim._zero_local_rank, group_id=group_id ) re &= torch.equal(fp16_p, torch.full_like(fp16_p, value, dtype=fp16_p.dtype)) else: for group in optim.param_groups: for p in group["params"]: re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype)) return re def overwrite_model_value(model, value): for p in model.parameters(): # p.copy_(torch.full_like(p, value, dtype=p.dtype)) p.data.fill_(value) def compare_model_value(model, value): re = True for p in model.parameters(): re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype)) return re @pytest.fixture(scope="function") def del_tmp(): del_tmp_file() yield del_tmp_file() @pytest.mark.usefixtures("del_tmp") @pytest.mark.usefixtures("reset_singletons") @pytest.mark.parametrize("ckpt_config", ckpt_config_list) def test_ckpt_mm(ckpt_config, init_dist_and_model): # noqa # pylint: disable=unused-import from internlm.utils.model_checkpoint import CheckpointLoadMask, CheckpointLoadType ckpt_config = Config(ckpt_config) assert ckpt_config.checkpoint_every < TOTAL_STEP assert ckpt_config.oss_snapshot_freq < TOTAL_STEP model, opim = init_dist_and_model train_state = TrainState(gpc.config, None) if isinstance(opim, HybridZeroOptimizer): print("Is HybridZeroOptimizer!", flush=True) else: print("Is naive Adam!", flush=True) ckpt_mm = CheckpointManager(ckpt_config, model=model, optimizer=opim) latest_ckpt_step = None for i in range(TOTAL_STEP + 1): overwrite_model_value(model, i) overwrite_optim_state(opim, i) train_state.batch_count = i train_state.step_count += 1 save_ckpts, _, _ = ckpt_mm.is_now_to_save_ckpt(train_state) if save_ckpts: latest_ckpt_step = i ckpt_mm.try_save_checkpoint(train_state) wait_async_upload_finish() latest_ckpt_info = ckpt_mm.query_lastest_ckpt() assert latest_ckpt_info is not None latest_ckpt = latest_ckpt_info["path"] if ckpt_mm.save_ckpt_folder.startswith("local"): assert latest_ckpt == "local:local_ckpt/snapshot/0", latest_ckpt else: assert latest_ckpt == f"{BOTO_SAVE_PATH}/snapshot/0", latest_ckpt del ckpt_mm SingletonMeta._instances = {} ckpt_mm = CheckpointManager(ckpt_config, model=model, optimizer=opim) ckpt_mm.try_resume_training(train_state) assert latest_ckpt_step == 5 assert train_state.step_count == 6 assert train_state.batch_count == 6 assert compare_optim_value(ckpt_mm.optimizer, latest_ckpt_step), ckpt_mm.optimizer.param_groups[0]["params"][0] assert compare_model_value(ckpt_mm.model, latest_ckpt_step), list(ckpt_mm.model.parameters())[0][0] if ckpt_mm.save_ckpt_folder.startswith("local:"): ckpt_mm.load_ckpt_info = dict( path=os.path.join(LOCAL_SAVE_PATH, "4"), content=CheckpointLoadMask(("all",)), ckpt_type=CheckpointLoadType.INTERNLM, ) else: ckpt_mm.load_ckpt_info = dict( path=os.path.join(BOTO_SAVE_PATH, "4"), content=CheckpointLoadMask(("all",)), ckpt_type=CheckpointLoadType.INTERNLM, ) ckpt_mm.try_resume_training(train_state) assert train_state.step_count == 4 assert train_state.batch_count == 4 assert compare_optim_value(ckpt_mm.optimizer, 3), ckpt_mm.optimizer.param_groups[0]["params"][0] assert compare_model_value(ckpt_mm.model, 3), list(ckpt_mm.model.parameters())[0][0] @pytest.mark.usefixtures("del_tmp") @pytest.mark.usefixtures("reset_singletons") @pytest.mark.parametrize("ckpt_config", ckpt_config_list) def test_ckpt_mm_ping(ckpt_config, init_dist_and_model): # noqa # pylint: disable=unused-import ckpt_config = Config(ckpt_config) model, opim = init_dist_and_model SingletonMeta._instances = {} ckpt_mm = CheckpointManager(ckpt_config, model=model, optimizer=opim) ckpt_mm.try_ping_storage() if __name__ == "__main__": pytest.main()