from typing import Dict, Tuple import torch def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]: """Split parameters into different groups for optimizer Compatiable with muiltiple param groups, each should have a name Args: param_groups (Tuple[Dict]): The list of parameter groups to split Returns: Tuple[Dict]: list of fp16/fp32 groups for optimizer """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") new_groups = {} for pgroup in param_groups: new_groups[pgroup["name"]] = {} new_groups[pgroup["name"]]["fp32"] = {} # Create fp32 groups and copy origin attribute fp32_group = new_groups[pgroup["name"]]["fp32"] fp32_group["name"] = pgroup["name"] + "_fp32" # copy attribute for fp32 group for ori_key in pgroup.keys(): if ori_key != "name": if ori_key == "params": fp32_group[ori_key] = [] else: fp32_group[ori_key] = pgroup[ori_key] # Assign param origin_params = [] for param in pgroup["params"]: if param.dtype == torch.float32: fp32_group["params"].append(param) else: origin_params.append(param) # origin group without fp32 pgroup["params"] = origin_params for _, v in new_groups.items(): for _, v1 in v.items(): param_groups.append(v1) return tuple(param_groups) def create_param_groups(model, weight_decay): parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay} return split_params_into_different_groups_for_optimizer(parameters)