## InternLM Installation ### Environment Preparation The required packages and corresponding version are shown as follows: - Python == 3.10 - GCC == 10.2.0 - MPFR == 4.1.0 - CUDA == 11.7 - Pytorch == 1.13.1+cu117 - Transformers >= 4.25.1 - Flash-Attention == v1.0.5 - Apex == 23.05 - GPU with Ampere or Hopper architecture (such as H100, A100) - Linux OS After installing the above dependencies, some system environment variables need to be updated: ```bash export CUDA_PATH={path_of_cuda_11.7} export GCC_HOME={path_of_gcc_10.2.0} export MPFR_HOME={path_of_mpfr_4.1.0} export LD_LIBRARY_PATH=${GCC_HOME}/lib64:${MPFR_HOME}/lib:${CUDA_PATH}/lib64:$LD_LIBRARY_PATH export PATH=${GCC_HOME}/bin:${CUDA_PATH}/bin:$PATH export CC=${GCC_HOME}/bin/gcc export CXX=${GCC_HOME}/bin/c++ ``` ### Environment Installation Clone the project `internlm` and its dependent submodules from the github repository, as follows: ```bash git clone git@github.com:InternLM/InternLM.git --recurse-submodules ``` It is recommended to build a Python-3.10 virtual environment using conda and install the required dependencies based on the `requirements/` files: ```bash conda create --name internlm-env python=3.10 -y conda activate internlm-env cd internlm pip install -r requirements/torch.txt pip install -r requirements/runtime.txt ``` Install flash-attention (version v1.0.5): ```bash cd ./third_party/flash-attention python setup.py install cd ./csrc cd fused_dense_lib && pip install -v . cd ../xentropy && pip install -v . cd ../rotary && pip install -v . cd ../layer_norm && pip install -v . cd ../../../../ ``` Install Apex (version 23.05): ```bash cd ./third_party/apex pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ cd ../../ ```