from typing import Dict, Tuple import torch from internlm.core.context.parallel_context import global_context as gpc from internlm.model.utils import is_gate_param, is_moe_param, is_norm_param def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]: """Split parameters into different MoE groups for optimizer Args: param_groups (Tuple[Dict]): The list of parameter groups to split Input Example: >>> ( >>> {'name': 'default', 'params': [tensor], 'weight_decay' :xxx}, >>> ..., >>> ) Returns: Tuple[Dict]: list of params groups for optimizer Output Example: >>> ( >>> {'name': 'default','params': [tensor],'weight_decay' :xxx}, >>> {'name': 'norm', 'norm': True, 'params': [tensor],'weight_decay' :xxx}, >>> {'name': 'gate', 'gate': True, 'params': [tensor],'weight_decay' :xxx}, >>> {'name': 'moe_ep_size_4', 'moe': True, 'params': [tensor],'weight_decay' :xxx}, >>> ..., >>> ) """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") # create new groups for fp32, norm, moe gate and moe expert new_groups = {} new_groups["fp32"] = {"name": "fp32", "params": []} for key in ["gate", "norm"]: new_groups[key] = {"name": key, key: True, "params": []} for key in gpc.expert_parallel_group_names: new_groups[key] = {"name": key, "moe": True, "params": []} for pgroup in param_groups: # copy attribute from origin group for ori_key in pgroup.keys(): if ori_key not in ("name", "params"): for _, group in new_groups.items(): group[ori_key] = pgroup[ori_key] # assign param origin_params = [] # first split the norm and gate groups, then the fp32 group, finally moe group for param in pgroup["params"]: if is_norm_param(param): new_groups["norm"]["params"].append(param) elif is_gate_param(param): new_groups["gate"]["params"].append(param) elif param.dtype == torch.float32: new_groups["fp32"]["params"].append(param) elif is_moe_param(param): new_groups[param.group_name]["params"].append(param) else: origin_params.append(param) # bf16 param group, which is the first group in the param groups pgroup["params"] = origin_params param_groups.extend(new_groups.values()) return tuple(param_groups) def create_param_groups(model, weight_decay): parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay} return split_params_into_different_groups_for_optimizer(parameters)