#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Optional import torch from einops import rearrange from flash_attn.modules.mha import ( CrossAttention, FlashCrossAttention, FlashSelfAttention, SelfAttention, _update_kv_cache, ) from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear from torch import nn from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode from internlm.core.context import global_context as gpc from internlm.model.embedding import RotaryEmbedding class MHA(nn.Module): """ Multi-head self-attention and cross-attention. Args: embed_dim (int): The dimention of hidden state. num_heads (int): The number of attention heads. process_group (torch.distributed.ProcessGroup): The group of the current device for `parallel_mode`. bias (boolean): Whether the bias is needed for linears. Will be used when initializing QKV matrix and output projection. True by default. dropout (float): The dropout rate for cross attention and self attention. 0.0 by default. softmax_scale (float): The temperature to use for the softmax attention. causal (boolean): Whether to apply causal attention mask. False by default. layer_idx (int): The index of current layer. None by default. rotary_emb_dim (int): The dimention of Rotary Embedding. 0 by default. rotary_emb_scale_base (int): The scaling factor of Rotary Embedding. If scale_base > 0, this implements XPos(Sun et al., https://arxiv.org/abs/2212.10554). 0 by default. use_flash_attn (boolean): Whether to use flash attention or not.If False, vanilla attention module will be used. False by default. sequence_parallel (boolean): If True, we're doing Tensor Parallel with sequence parallelism. An all_gather_raw of x will be done before doing the matmul. device (Optional[Union[str, torch.device]]): The device will be used. dtype (Optional[torch.dtype]): The type of data. """ def __init__( self, embed_dim: int, num_heads: int, process_group: Optional[torch.distributed.ProcessGroup], dropout: float = 0.0, softmax_scale: float = None, causal: bool = False, layer_idx: int = None, rotary_emb_dim: int = 0, rotary_emb_scale_base: int = 0, use_flash_attn: bool = False, sequence_parallel: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.layer_idx = layer_idx self.rotary_emb_dim = rotary_emb_dim self.use_flash_attn = use_flash_attn self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads if self.rotary_emb_dim > 0: self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base, device=device) # notice here should change bias=True self.Wqkv = ColumnParallelLinear( embed_dim, 3 * embed_dim, process_group, bias=True, sequence_parallel=sequence_parallel, **factory_kwargs, ) # according to https://spaces.ac.cn/archives/9577 inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) self.inner_cross_attn = inner_cross_attn_cls( causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout ) # output projection always have the bias (for now) self.out_proj = RowParallelLinear( embed_dim, embed_dim, process_group, sequence_parallel=sequence_parallel, **factory_kwargs ) # need to assign tp attribute so that internlm know it is tensor parallel module if gpc.get_world_size(ParallelMode.TENSOR) > 1: for name in ["out_proj", "Wqkv"]: for param in getattr(self, name).parameters(): setattr(param, IS_TENSOR_PARALLEL, True) def forward(self, x, seqlen=None, inference_params=None, **kwargs): if kwargs.get("indexes", None) is not None: return self._packed_forward(x=x, inference_params=inference_params, **kwargs) else: return self._forward(x=x, seqlen=seqlen, inference_params=inference_params) def _forward(self, x, seqlen=None, inference_params=None): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None. If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we split x during sequence parallel, we split the batch * seqlen dimension (in case batch is small). """ qkv = self.Wqkv(x) if seqlen is None: qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, d=self.head_dim) else: qkv = rearrange(qkv, "(b s) (three h d) -> b s three h d", s=seqlen, three=3, d=self.head_dim) if self.rotary_emb_dim > 0: if inference_params is None: qkv = self.rotary_emb.eval_forward(qkv) else: qkv = self.rotary_emb.eval_forward(qkv, seqlen_offset=inference_params.sequence_len_offset) if inference_params is None: context = self.inner_attn(qkv) else: q = qkv[:, :, 0] assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" kv = _update_kv_cache(qkv[:, :, 1:], inference_params, self.layer_idx) # If we're processing the prompt, causal=None (use self.causal). # If we're decoding, then causal=False. causal = None if inference_params.sequence_len_offset == 0 else False context = self.inner_cross_attn(q, kv, causal=causal) if seqlen is None: context = rearrange(context, "b s h d -> b s (h d)") else: context = rearrange(context, "b s h d -> (b s) (h d)") out = self.out_proj(context) return out def _packed_forward(self, x, inference_params=None, **kwargs): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None. If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we split x during sequence parallel, we split the batch * seqlen dimension (in case batch is small). """ qkv = self.Wqkv(x) # total x hsz' qkv = rearrange(qkv, "t (three h d) -> t three h d", three=3, d=self.head_dim) # total x 3 x n_head x d qkv = self.rotary_emb(qkv, kwargs.pop("indexes")) if inference_params is None: context = self.inner_attn(qkv, **kwargs) else: raise RuntimeError("Not support this right now") context = rearrange(context, "b h d -> b (h d)") # recover the shape out = self.out_proj(context) return out