#!/usr/bin/env python # -*- encoding: utf-8 -*- import argparse import os from pathlib import Path from typing import Dict, Union import torch from internlm.core.context import Config from internlm.core.context import global_context as gpc from internlm.monitor import initialize_light_monitor from internlm.utils.common import get_master_node from internlm.utils.logger import get_logger from internlm.utils.timeout import llm_timeout logger = get_logger(__file__) def get_default_parser(): """Reads user command line and uses an argument parser to parse the input arguments. Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed. Returns: Parser: Returns the parser with the default arguments, the user may add customized arguments into this parser. """ parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, help="path to the config file") parser.add_argument( "--launcher", type=str, default="slurm", choices=["slurm", "torch"], help="launcher for launching distributed environment", ) parser.add_argument("--host", type=str, help="the master address for distributed training") parser.add_argument("--port", type=int, default=8888, help="the master port for distributed training") parser.add_argument("--world_size", type=int, help="world size for distributed training") parser.add_argument("--rank", type=int, help="rank for the default process group") parser.add_argument("--local_rank", type=int, help="local rank on the node") parser.add_argument("--backend", type=str, default="nccl", help="backend for distributed communication") parser.add_argument("--seed", type=int, default=1024) parser.add_argument("--profiling", default=False, action="store_true", help="enable/disable profiling.") return parser def args_sanity_check(): assert gpc.config is not None, "config is not load!" # the default model type is INTERNLM if "model_type" not in gpc.config: gpc.config._add_item("model_type", "INTERNLM") # procssing the parallel config in gpc if "zero1" not in gpc.config.parallel: gpc.config.parallel._add_item("zero1", -1) if "pipeline" not in gpc.config.parallel: gpc.config.parallel._add_item("pipeline", 1) if "tensor" not in gpc.config.parallel: gpc.config.parallel._add_item("tensor", 1) # processing the data config in gpc data = gpc.config.data assert data.seq_len is not None, "'seq_len' must be given a value" assert data.micro_bsz is not None, "'micro_bsz' must be given a value" if "packed_length" in data and gpc.is_rank_for_log(): logger.warning("packed_length would be ignored and will be setted as seq_len * micro_bsz.") data._add_item("packed_length", data.seq_len * data.micro_bsz) if "micro_num" not in data: data._add_item("micro_num", 1) data._add_item("gradient_accumulation", data.micro_num) if gpc.is_rank_for_log(): logger.info(f"gradient_accumulation size will be setted to {data.micro_num}.") # batch_size should be equal with micro_num, should not use it directly data._add_item("batch_size", data.micro_num) if "min_length" not in data: data._add_item("min_length", 0) if "train_folder" not in data: data._add_item("train_folder", None) if "valid_folder" not in data: data._add_item("valid_folder", None) if "valid_micro_num" not in data: data._add_item("valid_micro_num", data.micro_num) if "valid_every" not in data: data._add_item("valid_every", 0) if "empty_cache_and_diag_interval" not in data: data._add_item("empty_cache_and_diag_interval", 50) if "diag_outlier_ratio" not in data: data._add_item("diag_outlier_ratio", 1.1) data.diag_outlier_ratio = max(1, data.diag_outlier_ratio) if gpc.is_rank_for_log(): logger.info("+" * 15 + " Data Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"seq_len: {data.seq_len}") logger.info(f"micro_num: {data.micro_num}") logger.info(f"micro_bsz: {data.micro_bsz}") logger.info(f"packed_length: {data.packed_length}") logger.info(f"pack_sample_into_one: {data.pack_sample_into_one}") logger.info(f"min_length: {data.min_length}") logger.info(f"valid_micro_num: {data.valid_micro_num}") logger.info(f"valid_every: {data.valid_every}") # processing the checkpoint config ckpt = gpc.config.ckpt if "enable_save_ckpt" not in ckpt: ckpt._add_item("enable_save_ckpt", True) # Saving checkpoint args. if ckpt.enable_save_ckpt: assert "checkpoint_every" in ckpt, "If enable save checkpoint, must give checkpoint_every in config.data!" assert ckpt.checkpoint_every > 0 assert "save_ckpt_folder" in ckpt, "If enable save checkpoint, must give save_ckpt_folder in config.data!" if "async_upload" not in ckpt: ckpt._add_item("async_upload", False) # async defalut is False. else: if ckpt.async_upload: assert "save_ckpt_folder" in ckpt if "boto3:" not in ckpt.save_ckpt_folder: if gpc.is_rank_for_log(): logger.warning( "Storing ckpt on file system does not support asynchronous storage, will use sync save!" ) ckpt.async_upload = False else: if "async_upload_tmp_folder" not in ckpt: ckpt._add_item("async_upload_tmp_folder", "/dev/shm/internlm_tmp_ckpt/") if not ckpt.async_upload: ckpt._add_item("async_upload_tmp_folder", None) if "oss_snapshot_freq" not in ckpt: ckpt._add_item("oss_snapshot_freq", float("inf")) # if oss_snapshot_freq not given, we disable. else: ckpt._add_item("checkpoint_every", float("inf")) ckpt._add_item("oss_snapshot_freq", float("inf")) ckpt._add_item("save_ckpt_folder", None) ckpt._add_item("async_upload", False) ckpt._add_item("async_upload_tmp_folder", None) ckpt._add_item("snapshot_ckpt_folder", None) if "load_ckpt_folder" not in ckpt: ckpt._add_item("load_ckpt_folder", None) if "stop_file_path" not in ckpt: ckpt._add_item("stop_file_path", None) if "auto_resume" not in ckpt: # If 'auto_resume' is not given, we set it to True, so internlm can have opportunity # to auto-load latest checkpoint. ckpt._add_item("auto_resume", True) if gpc.is_rank_for_log(): logger.info("+" * 15 + " Ckpt Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"is enable save ckpt: {ckpt.enable_save_ckpt}") logger.info(f"save_ckpt_folder: {ckpt.save_ckpt_folder}") logger.info(f"checkpoint_every: {ckpt.checkpoint_every}") # tensorboard writer config if "enable_tb" not in gpc.config: gpc.config._add_item("enable_tb", True) if "tensorboard_folder" not in gpc.config: gpc.config._add_item( "tensorboard_folder", os.environ["tensorboard_folder"] if "tensorboard_folder" in os.environ else None ) if "resume_tb_folder" not in gpc.config: gpc.config._add_item( "resume_tb_folder", os.environ["resume_tb_folder"] if "resume_tb_folder" in os.environ else None ) if gpc.is_rank_for_log(): logger.info(f"tensorboard_folder: {gpc.config.tensorboard_folder}") logger.info(f"resume_tb_folder: {gpc.config.resume_tb_folder}") # cudnn torch.backends.cudnn.benchmark = gpc.config.get("cudnn_benchmark", False) torch.backends.cudnn.deterministic = gpc.config.get("cudnn_deterministic", False) clip_grad_norm = gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0) if gpc.is_rank_for_log(): logger.info("+" * 15 + " Other Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"cudnn.benchmark: {torch.backends.cudnn.benchmark }") logger.info(f"cudnn.deterministic: {torch.backends.cudnn.deterministic }") logger.info(f"clip_grad_norm: {clip_grad_norm}") model = gpc.config.model if "dtype" not in model: logger.warning("dtype is not set, use torch.float16 by defalut!") model._add_item("dtype", torch.float16) else: if gpc.config.model.dtype == "torch.bfloat16": gpc.config.model.dtype = torch.bfloat16 elif gpc.config.model.dtype in ("torch.float16", "torch.half"): gpc.config.model.dtype = torch.float16 elif gpc.config.model.dtype == "torch.float32": gpc.config.model.dtype = torch.float32 elif gpc.config.model.dtype == "torch.tf32": torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True gpc.config.model.dtype = torch.float32 else: assert gpc.config.model.dtype in [ "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32", ] if "checkpoint" in model: if model.checkpoint is True: model.checkpoint = 1 elif model.checkpoint is False: model.checkpoint = 0 else: assert ( model.checkpoint >= 0 and model.checkpoint <= 1 ), f'model.checkpoint: "{model.checkpoint}" should >=0 and <=1' if gpc.is_rank_for_log(): logger.info("+" * 15 + " Model Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"Model: {gpc.config.model}") logger.info("+" * 15 + " grad_scaler Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"grad_scaler: {gpc.config.grad_scaler}") logger.info("+" * 15 + " hybrid_zero_optimizer Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"hybrid_zero_optimizer: {gpc.config.hybrid_zero_optimizer}") logger.info("+" * 15 + " adam Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"adam: {gpc.config.adam}") logger.info("+" * 15 + " beta2_scheduler Info " + "+" * 15) # pylint: disable=W1201 logger.info(f"beta2_scheduler: {gpc.config.beta2_scheduler}") # process the model config if "use_flash_attn" not in gpc.config.model: gpc.config.model._add_item("use_flash_attn", True) # process the parallel config if "sequence_parallel" not in gpc.config.parallel: gpc.config.parallel._add_item("sequence_parallel", False) else: assert not ( gpc.config.parallel.sequence_parallel is True and gpc.config.model.use_flash_attn is False ), "sequence parallel does not support use_flash_attn=False" # monitoring default config monitor_default_config = { "alert_address": None, # compatible with old alert config "monitor": { # new monitoring config "alert": {"enable_feishu_alert": False, "feishu_alert_address": None, "light_monitor_address": None} }, } for key, value in monitor_default_config.items(): if key not in gpc.config: gpc.config._add_item(key, value) alert = gpc.config.monitor.alert if alert.enable_feishu_alert and not alert.feishu_alert_address and gpc.is_rank_for_log(): logger.warning("alert is enable but alert_address is not set") optim_ckpt = gpc.config.hybrid_zero_optimizer if "zero_overlap_communication" in optim_ckpt: # Compatible with the old interfaces. optim_ckpt._add_item("overlap_sync_grad", optim_ckpt.zero_overlap_communication) if "overlap_sync_grad" not in optim_ckpt: optim_ckpt._add_item("overlap_sync_grad", False) if "overlap_sync_param" not in optim_ckpt: optim_ckpt._add_item("overlap_sync_param", False) if gpc.is_rank_for_log(): logger.info( f"overlap_sync_grad:{optim_ckpt.overlap_sync_grad}, overlap_sync_param:{optim_ckpt.overlap_sync_param}" ) def launch( config: Union[str, Path, Config, Dict], rank: int, world_size: int, host: str, port: int, backend: str = "nccl", local_rank: int = None, seed: int = 1024, ): """This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input arguments are not given. Then initialize and set distributed environment by calling global_context's functions. Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable rank (int): Rank for the default process group world_size (int): World size of the default process group host (str): The master address for distributed training port (str): The master port for distributed training backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` local_rank (int, optional): Rank for the process on the node and is used to set the default CUDA device, defaults to None. If local_rank = None, the default device ordinal will be calculated automatically. seed (int, optional): Specified random seed for every process. Defaults to 1024. Raises: Exception: Raise exception when config type is wrong """ # set config assert isinstance( config, (Config, str, Path, dict) ), f"expected argument config to be Config, str or Path, but got {type(config)}" if not isinstance(config, Config) and isinstance(config, dict): config = Config(config) if isinstance(config, (str, Path)): config = Config.from_file(config) gpc.load_config(config) # init default process group gpc.init_global_dist(rank, world_size, backend, host, port) # init process groups for different parallel modes from config gpc.init_parallel_groups() # set cuda device if torch.cuda.is_available(): # if local rank is not given, calculate automatically gpc.set_device(local_rank) # set the number of processes running on the same node gpc.detect_num_processes_on_current_node() gpc.set_seed(seed) if gpc.is_rank_for_log(): logger.info( f"Distributed environment is initialized, " f"data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, " f"tensor parallel size: {gpc.tensor_parallel_size}", ) def launch_from_slurm( config: Union[str, Path, Config, Dict], host: str, port: int, backend: str = "nccl", seed: int = 1024, ): """A wrapper for internlm.launch for SLURM launcher by reading rank and world size from the environment variables set by SLURM Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable host (str): The master address for distributed training port (str): The master port for distributed training backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` seed (int, optional): Specified random seed for every process. Defaults to 1024. """ try: rank = int(os.environ["SLURM_PROCID"]) world_size = int(os.environ["SLURM_NPROCS"]) except KeyError as e: raise RuntimeError(f"Could not find {e} in the SLURM environment") launch( config=config, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, ) def launch_from_torch( config: Union[str, Path, Config, Dict], backend: str = "nccl", seed: int = 1024, ): """A wrapper for internlm.launch for torchrun or torch.distributed.launch by reading rank and world size from the environment variables set by PyTorch Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` seed (int, optional): Specified random seed for every process. Defaults to 1024. """ try: rank = int(os.environ["RANK"]) local_rank = int(os.environ["LOCAL_RANK"]) world_size = int(os.environ["WORLD_SIZE"]) host = os.environ["MASTER_ADDR"] port = int(os.environ["MASTER_PORT"]) except KeyError as e: raise RuntimeError(f"Could not find {e} in the torch environment") launch( config=config, local_rank=local_rank, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, ) @llm_timeout(func_name="initialize_distributed_env") def initialize_distributed_env( config: str, launcher: str = "slurm", master_port: int = 8888, seed: int = 1024, args_check=True, ): """ Initialize distributed environment for distributed training. Args: config (str): Config file path. launcher (str): Launcher for launching distributed environment, can be slurm or torch. "slurm" by default. master_port (str): The master port for distributed training. 8888 by default. seed (int, optional): Specified random seed for every process. 1024 by default. """ torch.cuda.empty_cache() if launcher == "torch": launch_from_torch(config=config, seed=seed) elif launcher == "slurm": launch_from_slurm( config=config, host=get_master_node(), port=master_port, seed=seed, ) else: assert launcher in ["slurm", "torch"], "launcher only support slurm or torch" if args_check: args_sanity_check() # init light monitor client alert_config = gpc.config.monitor.alert if alert_config.enable_feishu_alert and gpc.is_rank_for_log(): light_monitor_address = alert_config.light_monitor_address if light_monitor_address: initialize_light_monitor(light_monitor_address) else: logger.warning("monitor address is none, monitor could not be used!") def get_config_value(config, key, defalut): try: value = config[key] except KeyError: value = defalut return value