# InternLM-7B Model Card ## Introduction InternLM-7B contains a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics: - It leverages trillions of high-quality tokens for training to establish a powerful knowledge base. - It supports an 8k context window length, enabling longer input sequences and stronger reasoning capabilities. - It provides a versatile toolset for users to flexibly build their own workflows. ## Model Zoo | Model | Transformers(HF) | ModelScope(HF) | OpenXLab(HF) | OpenXLab(Original) | Release Date | | -------------------- | ------------------------------------------- | ----------------------------------------- | --------------------------------------- | --------------------------------------------- | ------------ | | **InternLM Chat 7B** | [🤗internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) | [ Shanghai_AI_Laboratory/internlm-chat-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-chat-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-chat-7b-original) | 2023-12-12 | | **InternLM 7B** | [🤗internlm/internlm-7b](https://huggingface.co/internlm/internlm-7b) | [ Shanghai_AI_Laboratory/internlm-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-7b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-7b) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM-7b-original) | 2023-07-06 | ## Performance Evaluation We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://opencompass.org.cn/rank) for more evaluation results. | Datasets\\Models | **InternLM-Chat-7B** | **InternLM-7B** | LLaMA-7B | Baichuan-7B | ChatGLM2-6B | Alpaca-7B | Vicuna-7B | | ---------------- | -------------------- | --------------- | -------- | ----------- | ----------- | --------- | --------- | | C-Eval(Val) | 52.0 | 53.4 | 24.2 | 42.7 | 50.9 | 28.9 | 31.2 | | MMLU | 52.6 | 51.0 | 35.2\* | 41.5 | 46.0 | 39.7 | 47.3 | | AGIEval | 46.4 | 37.6 | 20.8 | 24.6 | 39.0 | 24.1 | 26.4 | | CommonSenseQA | 80.8 | 59.5 | 65.0 | 58.8 | 60.0 | 68.7 | 66.7 | | BUSTM | 80.6 | 50.6 | 48.5 | 51.3 | 55.0 | 48.8 | 62.5 | | CLUEWSC | 81.8 | 59.1 | 50.3 | 52.8 | 59.8 | 50.3 | 52.2 | | MATH | 5.0 | 7.1 | 2.8 | 3.0 | 6.6 | 2.2 | 2.8 | | GSM8K | 36.2 | 31.2 | 10.1 | 9.7 | 29.2 | 6.0 | 15.3 | | HumanEval | 15.9 | 10.4 | 14.0 | 9.2 | 9.2 | 9.2 | 11.0 | | RACE(High) | 80.3 | 57.4 | 46.9\* | 28.1 | 66.3 | 40.7 | 54.0 | - The evaluation results were obtained from [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) (some data marked with \*, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/). - The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).