#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch def packed_collate_fn(batch, packed_length): """ Collate function for packed input sequences. Args: batch (List[Dict]): List of dictionaries representing each sample in batch. Each dictionary contains "tokens", "labels", "type_ids", "cu_seqlens", and "indexes" keys. packed_length (int): The length of packed sequence. Returns: Tuple[Dict[str, torch.Tensor], torch.Tensor]: A tuple containing a dictionary of tensors with "input_ids", "cu_seqlens", "indexes", and "type_ids" keys, and the tensor of padded "labels". Raises: AssertionError: If the length of a sample is not equal to packed_length. AssertionError: If the shape of the padded "input_ids" tensor does not have the correct shape. """ xs, ys, cu_seqlens, indexes, ts = [], [], [], [], [] for b in batch: assert ( len(b["tokens"]) == packed_length ), f"length of a sample should be equal to packed_length, but got {len(b['tokens'])} and {packed_length})" assert ( len(b["labels"]) == packed_length ), f"length of a sample should be equal to packed_length, but got {len(b['labels'])} and {packed_length})" assert ( len(b["type_ids"]) == packed_length ), f"length of a sample should be equal to packed_length, but got {len(b['type_ids'])} and {packed_length})" tokens = [abs(w) for w in b["tokens"]] labels = [w if w > 0 else -100 for w in b["labels"]] xs.append(torch.LongTensor(tokens)) # The labels have been shifted here, so they are aligned with the output corresponding to the token ys.append(torch.LongTensor(labels)) ts.append(torch.LongTensor(b["type_ids"])) cu_seqlens.append(torch.IntTensor(b["cu_seqlens"])) indexes.append(torch.LongTensor(b["indexes"])) xs = torch.nn.utils.rnn.pad_sequence(xs, batch_first=True) ys = torch.nn.utils.rnn.pad_sequence(ys, batch_first=True, padding_value=-100) ts = torch.nn.utils.rnn.pad_sequence(ts, batch_first=True, padding_value=0) indexes = torch.stack(indexes, dim=0) if len(set(map(len, cu_seqlens))) == 1: # if has uniform length, then stack to save device transfer time cu_seqlens = torch.stack(cu_seqlens, dim=0) assert xs.shape[1] == packed_length, (xs.shape[1], packed_length) return {"input_ids": xs, "cu_seqlens": cu_seqlens, "indexes": indexes, "type_ids": ts}, ys def jsonl_ds_collate_fn(batch, max_length_per_sample): """ Collate function for json dataset. Args: batch (List[Dict]): List of dictionaries representing each sample in batch. Each dictionary contains "tokens". max_length_per_sample (int): The length of output sequence. Returns: Tuple[Dict[str, torch.Tensor], torch.Tensor]: A tuple containing a dictionary of tensors with "input_ids", and the tensor of padded "labels". """ xs, ys = [], [] for x in batch: x["tokens"] = x["tokens"][:max_length_per_sample] tokens = [abs(w) for w in x["tokens"]] labels = [w if w > 0 else -100 for w in x["tokens"]] labels = labels[1:] + [-100] xs.append(torch.as_tensor(tokens)) ys.append(torch.as_tensor(labels)) # y has been shifted xs = torch.nn.utils.rnn.pad_sequence(xs, batch_first=True) ys = torch.nn.utils.rnn.pad_sequence(ys, batch_first=True, padding_value=-100) xs = torch.cat([xs, xs.new_zeros(len(xs), max_length_per_sample - len(xs[0]))], dim=-1) ys = torch.cat([ys, ys.new_full((len(ys), max_length_per_sample - len(ys[0])), fill_value=-100)], dim=-1) return {"input_ids": xs}, ys