## 基于InternLM的预训练与微调使用教程 启动一个 Demo 模型训练,需要进行三项准备,**安装**,**数据集准备**和**模型训练配置**。接下来,首先会介绍数据准备相关的操作,再简要描述模型训练配置相关的内容。 ### 安装 请参考[安装文档](./install.md)进行安装。 ### 数据准备 (预训练) InternLM训练任务的数据集包括一系列的`bin`和`meta`文件。使用`tokenizer`从原始文本文件生成训练用数据集。通过在`tools/tokenizer.py`中指定模型参数路径的方式来导入tokenizer模型。目前提供`V7_sft.model`来生成tokens。若想使用不同的模型,可直接修改`tokernizer.py`中的模型参数路径。 可以运行以下命令生成原始数据对应的`bin`和`meta`文件,其中参数`text_input_path`表示原始文本数据路径,目前支持`txt`、`json`和`jsonl`三种输入格式,`bin_output_path`表示生成的`bin`文件的保存路径。 ```bash $ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path ``` 下面是一个数据处理的例子: 给定一个包含原始数据集的文件`raw_data.txt`,原始数据集如下所示: ```bash 感恩生活中的每一个细节,才能真正体会到幸福的滋味。 梦想是人生的动力源泉,努力追逐,才能实现自己的目标。 学会宽容和理解,才能建立真正和谐的人际关系。 ``` 可以通过运行以下命令来生成`bin`和`meta`文件: ```bash $ python tools/tokenizer.py --text_input_path raw_data.txt --bin_output_path cn/output.bin ``` 需要注意的是,生成的`bin`文件需要保存在`cn`或者`en`或者`code`或者`ja`或者`ar`或者`kaoshi`这六个目录下,以区分数据集的类型。 其中,`cn`表示中文数据集;`en`表示英文数据集;`code`表示代码数据集;`ja`表示日语数据集;`ar`表示阿拉伯语数据集;`kaoshi`表示考试数据集。 生成的bin文件的格式如下: ```python {"tokens": [73075, 75302, 69522, 69022, 98899, 67713, 68015, 81269, 74637, 75445, 99157]} {"tokens": [69469, 60355, 73026, 68524, 60846, 61844, 98899, 67775, 79241, 98899, 67713, 67800, 67453, 67838, 99157]} {"tokens": [68057, 79017, 60378, 68014, 98899, 67713, 67990, 68015, 70381, 67428, 61003, 67622, 99157]} ``` `bin`文件中的每一行均对应原始数据集中的每一个句子,表示每个句子的`token`(下文将用sequence指定)。 生成的`meta`文件的格式如下: ```bash (0, 11), (90, 15), (208, 13) ``` 在`meta`文件中,每个元组对应着`bin`文件中每一个`sequence`的元信息。其中,元组的第一个元素表示每个`sequence`在所有`sequence`中的`starting index`,第二个元素表示每个`sequence`中有多少个`tokens`。 例如,对于第一个`sequence`,`starting index`为 0,有 11 个`tokens`;对于第二个`sequence`,由于第一个`sequence`转换为`string`后的长度为`89`,因此它的`starting index`为 90,有 15 个`tokens`。 `json`和`jsonl`类型的文件的`bin`和`meta`文件格式和`txt`一致,此处不再赘叙。 ### 数据准备 (微调) 微调任务的数据集格式与预训练任务保持一致,生成的数据格式为一系列的`bin`和`meta`文件。以下以 Alpaca 数据集为例,介绍微调的数据准备流程。 1. 下载 [Alpaca 数据集](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json) 2. 对 Alpaca 数据进行 tokenize,使用以下命令 ```shell python tools/alpaca_tokenizer.py /path/to/alpaca_dataset /path/to/output_dataset /path/to/tokenizer --split_ratio 0.1 ``` 建议用户参考 alpaca_tokenizer.py 编写新的脚本对自己的数据集进行 tokenize ### 训练配置 以 7B Demo 的配置文件`configs/7B_sft.py`为例,介绍启动一个模型训练所需要进行的数据、模型和并行等相关的配置。 #### 数据配置 数据相关的关键参数配置及释义如下所示: ```python TRAIN_FOLDER = "/path/to/dataset" SEQ_LEN = 2048 data = dict( seq_len=SEQ_LEN, # 数据样本长度,默认值为 2048 micro_num=1, # micro_num 是指在一次模型参数更新中会处理的 micro_batch 的数目,默认值为 1 micro_bsz=1, # packed_length = micro_bsz * SEQ_LEN,为一次处理的 micro_batch 的数据大小,默认值为 1 total_steps=50000, # 总的所需执行的 step 的数目,默认值为 50000 min_length=50, # 若数据集文件中,数据行数少于50,将会被废弃 train_folder=TRAIN_FOLDER, # 数据集文件路径,默认值为 None;若 train_folder 为空,则以自动生成的随机数据集进行训练测试 pack_sample_into_one=False, # 数据整理的逻辑,决定是按照 seq_len 维度或者是 sequence 的真实长度来进行attention计算 ) ```
目前支持传入数据集文件路径`train_folder`,且要求文件格式如下: ```bash - folder - code train_000.bin train_000.bin.meta ``` 数据集的详细内容可参考``数据准备``模块相关的介绍。 #### 模型配置 如果在启动训练时要加载模型 `checkpoint`,可进行如下相关配置: ```python SAVE_CKPT_FOLDER = "local:/path/to/save/ckpt" MODEL_ONLY_FOLDER = "local:/path/to/load/init/model/ckpt" LOAD_CKPT_FOLDER = "local:/path/to/load/resume/ckpt" ckpt = dict( save_ckpt_folder=SAVE_CKPT_FOLDER, # 存储模型和优化器 checkpoint 的路径 checkpoint_every=float("inf"), # 每多少个 step 存储一次 checkpoint,默认值为 inf load_model_only_folder=MODEL_ONLY_FOLDER, # 加载模型初始权重的路径,只加载模型权重,不加载优化器权重,训练将从第一个 step 开始 load_ckpt_folder=LOAD_CKPT_FOLDER, # 断点续训时,加载模型和优化器等权重的路径,将从指定的 step 恢复训练 load_optimizer=True, # 断点续训时,是否需要加载优化器权重,默认值为 True ) ``` 注意: - `load_model_only_folder`与`load_ckpt_folder`不能同时设置 - 路径若以 `local:` 为前缀,则存储在本地文件系统;若以 `boto3:` 为前缀,则存储在远程 oss 上 模型相关关键参数配置如下所示: ```python model_type = "INTERNLM" # 模型类型,默认值为 "INTERNLM",对应模型结构初始化接口函数 NUM_ATTENTION_HEAD = 32 VOCAB_SIZE = 103168 HIDDEN_SIZE = 4096 NUM_LAYER = 32 MLP_RATIO = 8 / 3 model = dict( checkpoint=False, # 进行重计算的模型层数比例,可选值为 True/False/[0-1] num_attention_heads=NUM_ATTENTION_HEAD, embed_split_hidden=True, vocab_size=VOCAB_SIZE, embed_grad_scale=1, parallel_output=True, hidden_size=HIDDEN_SIZE, num_layers=NUM_LAYER, mlp_ratio=MLP_RATIO, apply_post_layer_norm=False, dtype="torch.bfloat16", norm_type="rmsnorm", layer_norm_epsilon=1e-5, ) ``` 注意:用户可自定义模型类型名和模型结构,并配置相对应的模型参数。通过`utils/registry.py`下的`MODEL_INITIALIZER`对象进行模型初始化函数接口注册,在训练主函数`train.py`中初始化模型时,可通过`model_type`配置获取指定的模型初始化接口函数。 *如果基于 InternLM 7B继续训练,可以参考 [ModelZoo](https://github.com/InternLM/InternLM/tree/main#model-zoo) 中 OpenXLab 链接下载权重* #### 并行配置 训练并行配置样例如下: ```python parallel = dict( zero1=8, tensor=1, pipeline=dict(size=1, interleaved_overlap=True), sequence_parallel=False, ) ``` - zero1:zero 并行策略,分如下三种情况,默认值为 -1 - 当`size <= 0`,则 zero1 进程组的大小等于数据并行进程组的大小,因此优化器状态参数将在数据并行范围内分配 - 当`size == 1`,则不使用 zero1 ,所有数据并行组保留完整的优化器状态参数 - 当`size > 1`且`size <= data_parallel_world_size`,则 zero1 进程组是数据并行进程组的子集 - tensor:张量并行大小,通常是每个节点的 GPU 数量,默认值为 1 - pipeline:流水线并行策略 - size:流水线并行大小,默认值为 1 - interleaved_overlap:bool 类型,交错式调度时,开启或关闭通信优化,默认值为关闭 - sequence_parallel:是否开启序列化并行,默认值为 False 注意:`数据并行大小 = 总的 GPU 数目 / 流水线并行大小 / 张量并行大小` ### 启动训练 完成了以上数据集准备和相关训练配置后,可启动 Demo 训练。接下来分别以 slurm 和 torch 环境为例,介绍训练启动方式。 若在 slurm 上启动分布式运行环境,多节点 16 卡的运行命令如下所示: ```bash $ srun -p internllm -N 2 -n 16 --ntasks-per-node=8 --gpus-per-task=1 python train.py --config ./configs/7B_sft.py ``` 若在 torch 上启动分布式运行环境,单节点 8 卡的运行命令如下所示: ```bash $ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py --launcher "torch" ``` ### 运行结果 以 slurm 上单机 8 卡的 Demo 训练配置为例,训练结果日志展示如下: ```bash 2023-07-07 12:26:58,293 INFO launch.py:228 in launch -- Distributed environment is initialized, data parallel size: 8, pipeline parallel size: 1, tensor parallel size: 1 2023-07-07 12:26:58,293 INFO parallel_context.py:535 in set_seed -- initialized seed on rank 2, numpy: 1024, python random: 1024, ParallelMode.DATA: 1024, ParallelMode.TENSOR: 1024,the default parallel seed is ParallelMode.DATA. 2023-07-07 12:26:58,295 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=0=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=5=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=1=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=6=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=7=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=2=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=4=========== 2023-07-07 12:26:58,296 INFO train.py:378 in main -- ===========New Run Jul07_12-26-58 on host:SH-IDC1-10-140-0-135,tp:0,pp=0,dp=3=========== 2023-07-07 12:28:27,826 INFO hybrid_zero_optim.py:295 in _partition_param_list -- Number of elements on ranks: [907415552, 907411456, 910163968, 910163968, 921698304, 921698304, 921698304, 921698304], rank:0 2023-07-07 12:28:57,802 INFO train.py:323 in record_current_batch_training_metrics -- tflops=63.27010355651958,step=0,loss=11.634403228759766,tgs (tokens/gpu/second)=1424.64,lr=4.0000000000000003e-07,loss_scale=65536.0,grad_norm=63.672620777841004,micro_num=4,num_consumed_tokens=131072,inf_nan_skip_batches=0,num_samples_in_batch=19,largest_length=2048,largest_batch=5,smallest_batch=4,adam_beta2=0.95,fwd_bwd_time=6.48 2023-07-07 12:29:01,636 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.83371103277346,step=1,loss=11.613704681396484,tgs (tokens/gpu/second)=4274.45,lr=6.000000000000001e-07,loss_scale=65536.0,grad_norm=65.150786641452,micro_num=4,num_consumed_tokens=262144,inf_nan_skip_batches=0,num_samples_in_batch=16,largest_length=2048,largest_batch=5,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.67 2023-07-07 12:29:05,451 INFO train.py:323 in record_current_batch_training_metrics -- tflops=190.99928472960033,step=2,loss=11.490386962890625,tgs (tokens/gpu/second)=4300.69,lr=8.000000000000001e-07,loss_scale=65536.0,grad_norm=61.57798028719357,micro_num=4,num_consumed_tokens=393216,inf_nan_skip_batches=0,num_samples_in_batch=14,largest_length=2048,largest_batch=4,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.66 2023-07-07 12:29:09,307 INFO train.py:323 in record_current_batch_training_metrics -- tflops=188.8613541410694,step=3,loss=11.099515914916992,tgs (tokens/gpu/second)=4252.55,lr=1.0000000000000002e-06,loss_scale=65536.0,grad_norm=63.5478796484391,micro_num=4,num_consumed_tokens=524288,inf_nan_skip_batches=0,num_samples_in_batch=16,largest_length=2048,largest_batch=5,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.7 2023-07-07 12:29:13,147 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.65918563194305,step=4,loss=10.149517059326172,tgs (tokens/gpu/second)=4270.52,lr=1.2000000000000002e-06,loss_scale=65536.0,grad_norm=51.582841631508145,micro_num=4,num_consumed_tokens=655360,inf_nan_skip_batches=0,num_samples_in_batch=19,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.68 2023-07-07 12:29:16,994 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.3109313713174,step=5,loss=9.822169303894043,tgs (tokens/gpu/second)=4262.67,lr=1.4000000000000001e-06,loss_scale=65536.0,grad_norm=47.10386835560855,micro_num=4,num_consumed_tokens=786432,inf_nan_skip_batches=0,num_samples_in_batch=17,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.69 ```