#!/usr/bin/env python # -*- encoding: utf-8 -*- import math from typing import Optional import torch from apex.normalization.fused_layer_norm import MixedFusedRMSNorm as RMSNorm from flash_attn.modules.embedding import ParallelGPT2Embeddings from flash_attn.modules.mlp import ParallelFusedMLP from torch import nn from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode from internlm.core.context.parallel_context import global_context as gpc from internlm.initialize.initialize_tensor import normal_, scaled_init_method_normal from internlm.model.embedding import Embedding1D from internlm.model.linear import ( FeedForward, RewardModelLinear, ScaleColumnParallelLinear, ) from internlm.model.multi_head_attention import MHA from internlm.model.utils import gather_forward_split_backward from internlm.solver.pipeline_utils import partition_uniform from internlm.utils.checkpoint import activation_checkpoint from internlm.utils.common import filter_kwargs from internlm.utils.logger import get_logger from internlm.utils.registry import MODEL_INITIALIZER MODEL_TYPE = "INTERNLM" logger = get_logger(__file__) class PackedFlashBaseLayer1D(nn.Module): """ 1D Packed Flash Base Layer. Args: hidden_size (int): The hidden size of model. 768 by default. num_attention_heads (int): The number of attention heads. 12 by default. mlp_ratio (int): The ratio of MLP layers. 4 by default. attn_drop_rate (float): The dropout rate of attention module. 0 by default. drop_rate (float): The dropout rate of the input hidden state. 0.0 by default. dtype (torch.dtype): Type of data. torch.float by default. layer_norm_epsilon (float): A value added to the denominator for numerical stability. 1e-5 by default. checkpoint (bool): Whether to use checkpointing to save VRAM. True by default. layer_idx (int): The index of current layer. 0 by default. residual_in_fp32 (bool): Whether to use residual in fp32. False by default. device (Optional[Union[str, torch.device]]): The device will be used. norm_type (str): Use RMS norm or layernorm."rmsnorm" by default. use_flash_attn (bool): Whether use flash-attn. True by default. """ def __init__( self, hidden_size: int = 768, num_attention_heads: int = 12, mlp_ratio: int = 4, attn_drop_rate: float = 0, drop_rate: float = 0.0, dtype: torch.dtype = torch.float, layer_norm_epsilon: float = 1e-6, checkpoint: bool = False, layer_idx: int = 0, residual_in_fp32: bool = False, device: Optional[torch.device] = None, norm_type: str = "rmsnorm", dropout_selective_checkpoint: bool = True, use_scaled_init: bool = True, use_swiglu: bool = True, use_flash_attn: bool = True, ): super().__init__() self.checkpoint = checkpoint # dropout selective checkpoint can only be enabled when checkpoint is disabled. self.dropout_selective_checkpoint = dropout_selective_checkpoint is True and checkpoint is False self.layer_idx = layer_idx self.use_flash_attn = use_flash_attn head_dim = hidden_size // num_attention_heads self.mixer = MHA( embed_dim=hidden_size, num_heads=num_attention_heads, process_group=gpc.get_group(ParallelMode.TENSOR), dropout=attn_drop_rate, softmax_scale=1 / math.sqrt(head_dim), causal=True, layer_idx=layer_idx, rotary_emb_dim=head_dim, rotary_emb_scale_base=0, use_flash_attn=use_flash_attn, sequence_parallel=False, device=device, dtype=dtype, ) self.dropout1 = nn.Dropout(drop_rate) if norm_type == "rmsnorm": self.norm1 = RMSNorm(hidden_size, eps=layer_norm_epsilon) self.norm2 = RMSNorm(hidden_size, eps=layer_norm_epsilon) else: self.norm1 = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon) self.norm2 = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon) if use_swiglu: self.mlp = FeedForward( hidden_size, int(hidden_size * mlp_ratio), out_features=hidden_size, process_group=gpc.get_group(ParallelMode.TENSOR), bias=False, device=device, dtype=dtype, ) else: self.mlp = ParallelFusedMLP( hidden_size, int(hidden_size * mlp_ratio), out_features=hidden_size, activation="gelu_approx", process_group=gpc.get_group(ParallelMode.TENSOR), bias1=False, bias2=False, sequence_parallel=False, checkpoint_lvl=0, heuristic="auto", device=device, dtype=dtype, ) self.dropout2 = nn.Dropout(drop_rate) self.use_swiglu = use_swiglu self.use_scaled_init = use_scaled_init self.residual_in_fp32 = residual_in_fp32 # only make sense when using prenorm self.return_residual = False self.reset_parameters() def reset_parameters(self): with torch.no_grad(): for name, param in self.mixer.named_parameters(): if param.ndim == 1: param.data.zero_() elif "Wqkv" in name: normal_(std=0.006)(param.data) elif self.use_scaled_init: scaled_init_method_normal(sigma=0.006, num_layers=self.layer_idx + 1)(param.data) else: normal_(std=0.0015)(param.data) for name, param in self.mlp.named_parameters(): if param.ndim == 1 and "bias" in name: param.data.zero_() elif self.use_swiglu: if self.use_scaled_init and "w2" in name: scaled_init_method_normal(sigma=0.006, num_layers=self.layer_idx + 1)(param.data) else: normal_(std=0.006 if "w1" in name or "w2" in name else 0.0015)(param.data) else: if self.use_scaled_init and "fc1" not in name: scaled_init_method_normal(sigma=0.006, num_layers=self.layer_idx + 1)(param.data) else: normal_(std=0.006 if "fc1" in name else 0.0015)(param.data) def forward(self, hidden_states, cu_seqlens=None, indexes=None, inference_params=None, max_seqlen=None): if self.checkpoint and self.training: return activation_checkpoint( self._forward, False, hidden_states, cu_seqlens, indexes, inference_params, max_seqlen ) else: return self._forward(hidden_states, cu_seqlens, indexes, inference_params, max_seqlen) def _forward(self, hidden_states=None, cu_seqlens=None, indexes=None, inference_params=None, max_seqlen=None): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: hidden_states = Attn/MLP(LN(residual)) cu_seqlens: 1d LongTensor, len(cu_seqlens) = hidden_states + 1 indexes: the length of index is same as hidden states, which stand for the current position """ mixer_kwargs = { "cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, "indexes": indexes, "inference_params": inference_params, } def _dropout_and_norm_attn(_hidden_states): _dropped = self.dropout1(_hidden_states) _residual = _dropped _hidden_states = self.norm1(_residual.float()) return _residual, _hidden_states if self.dropout_selective_checkpoint: residual, hidden_states = activation_checkpoint(_dropout_and_norm_attn, False, hidden_states) else: residual, hidden_states = _dropout_and_norm_attn(hidden_states) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mixer(hidden_states, **mixer_kwargs) def _dropout_and_norm_ffn(_residual, _hidden_states): _dropped = self.dropout2(_hidden_states) _residual = (_dropped + _residual) if _residual is not None else _dropped _hidden_states = self.norm2(_residual.float()) return _residual, _hidden_states if self.dropout_selective_checkpoint: residual, hidden_states = activation_checkpoint(_dropout_and_norm_ffn, False, residual, hidden_states) else: residual, hidden_states = _dropout_and_norm_ffn(residual, hidden_states) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mlp(hidden_states) return hidden_states + residual class PackedFlashInternLm1D(nn.Module): """ 1D Packed Flash InternLm. Args: num_layers (int): The number of layer. 12 by default. hidden_size (int): The size of hidden state. 768 by default. num_attention_heads (int): The number of attention head. 12 by default. vocab_size (int): The size of vocabulary. 50304 by default. mlp_ratio (int): The ratio of MLP layers. 4 by default. attn_drop_rate (float): The dropout rate of attention module. 0.0 by default. drop_rate (float): The dropout rate of input hidden state. 0.0 by default. dtype (torch.dtype): The type of data. torch.float by default. checkpoint (bool): Whether to use checkpointing to save VRAM. True by default. checkpoint_fraction (float): The proportion of layers that need to be checkpointed compared to the total number of layers. 1.0 by default. layer_norm_epsilon (float): A value added to the denominator for numerical stability. 1e-6 by default. first (bool): Whether input embedding layer or not. False by default. last (bool): Whether output embedding layer or not. False by default. embed_split_hidden (bool): Split the embedding layer in the hidden state dimention or vocabulary dimention. True by default. embed_grad_scale (float): Refer to GLM-130B, for training stability. 0.1 by default. parallel_output (bool): If it is necessary to collect the output of parallel computing. True by default. start_layer_idx (int): The index of start layer in the pipeline. 0 by default. device (Optional[Union[str, torch.device]]): The device will be used. None by default. residual_in_fp32 (bool): Whether to use residual in fp32. False by default. norm_type (str): Normalization type. Use RMSNorm or LayerNorm. "rmsnorm" by default. use_flash_attn (bool): Whether to use flash-attn. True by default. """ def __init__( self, num_layers: int = 12, hidden_size: int = 768, num_attention_heads: int = 12, vocab_size: int = 50304, mlp_ratio: int = 4.0, attn_drop_rate: float = 0.0, drop_rate: float = 0.0, dtype: torch.dtype = torch.float, checkpoint: bool = False, checkpoint_fraction: float = 1.0, layer_norm_epsilon: float = 1e-5, first: bool = False, last: bool = False, embed_split_hidden: bool = False, embed_grad_scale: float = 0.1, parallel_output: bool = True, start_layer_idx: int = 0, device: Optional[torch.device] = None, residual_in_fp32: bool = False, norm_type: str = "rmsnorm", is_reward: bool = False, dropout_selective_checkpoint: bool = True, use_scaled_init: bool = True, use_swiglu: bool = True, use_flash_attn: bool = True, ): super().__init__() self.use_flash_attn = use_flash_attn if checkpoint_fraction <= 0: checkpoint = False if not checkpoint: checkpoint_fraction = 0 checkpoint_layer_num = num_layers * checkpoint_fraction if is_reward: head_cls = RewardModelLinear else: head_cls = ScaleColumnParallelLinear if first: if embed_split_hidden: self.embedding = Embedding1D(num_embeddings=vocab_size, embedding_dim=hidden_size) else: self.embedding = ParallelGPT2Embeddings( embed_dim=hidden_size, vocab_size=vocab_size, max_position_embeddings=-1, process_group=gpc.get_group(ParallelMode.TENSOR), padding_idx=None, sequence_parallel=False, device=device, dtype=dtype, ) for _, param in self.embedding.named_parameters(): normal_(std=0.0052)(param) if gpc.get_world_size(ParallelMode.TENSOR) > 1: setattr(param, IS_TENSOR_PARALLEL, True) self.embed_grad_scale = embed_grad_scale self.blocks = nn.ModuleList( [ PackedFlashBaseLayer1D( hidden_size=hidden_size, num_attention_heads=num_attention_heads, mlp_ratio=mlp_ratio, attn_drop_rate=attn_drop_rate, drop_rate=drop_rate, dtype=dtype, layer_norm_epsilon=layer_norm_epsilon, checkpoint=lid < checkpoint_layer_num, layer_idx=lid + start_layer_idx, # This parameter is used for caching during generation residual_in_fp32=residual_in_fp32, device=device, norm_type=norm_type, dropout_selective_checkpoint=dropout_selective_checkpoint, use_scaled_init=use_scaled_init, use_swiglu=use_swiglu, use_flash_attn=use_flash_attn, ) for lid in range(num_layers) ] ) if last: if norm_type == "rmsnorm": self.norm = RMSNorm(hidden_size, eps=layer_norm_epsilon) else: self.norm = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon) self.head = head_cls( in_features=hidden_size, out_features=gpc.get_world_size(ParallelMode.TENSOR) if is_reward else vocab_size, process_group=gpc.get_group(ParallelMode.TENSOR), bias=False, sequence_parallel=False, device=device, dtype=dtype, weight_scale=embed_grad_scale, ) for _, param in self.head.named_parameters(): normal_(std=0.0052)(param) if gpc.get_world_size(ParallelMode.TENSOR) > 1: setattr(param, IS_TENSOR_PARALLEL, True) self.parallel_output = parallel_output def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None): # attention_mask: compute attention on the places where the value is 1 if hasattr(self, "embedding"): hidden_states = self.embedding(input_ids) if self.embed_grad_scale != 1: hidden_states = ( self.embed_grad_scale * hidden_states + (1 - self.embed_grad_scale) * hidden_states.detach() ) if isinstance(cu_seqlens, list): assert len(cu_seqlens) == 1 cu_seqlens = cu_seqlens[0].to(hidden_states.device) if cu_seqlens is not None: cu_seqlens = cu_seqlens.squeeze(0) hidden_states = hidden_states.squeeze(0) # If cu_seqlens is passed in,it indicated a packed state, # the batch dimension with a size of 1 should be directly squeezed off. if indexes is not None: assert len(indexes) == 1 # The indexes are used to indicate the actual position IDs of each token in the packed input. indexes = indexes[0] max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() if cu_seqlens is not None else None for _, block in enumerate(self.blocks): hidden_states = block( hidden_states, cu_seqlens=cu_seqlens, indexes=indexes, inference_params=inference_params, max_seqlen=max_seqlen, ) if hasattr(self, "norm"): hidden_states = self.norm(hidden_states.float()) if hasattr(self, "head"): hidden_states = self.head(hidden_states) if not self.parallel_output: hidden_states = gather_forward_split_backward(hidden_states, ParallelMode.TENSOR, dim=-1) return hidden_states def _build_generic_model_1d(num_layers, num_chunks, device=torch.device("cuda"), **kwargs): """ build generic model 1d Args: num_layers (int): The number of layer. num_chunks (int): The number of partitions in pipeline parallel. device (Optional[Union[str, torch.device]]): The device will be used. torch.device("cuda") by default. """ pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) all_parts = partition_uniform(num_layers, pipeline_size, num_chunks) parts = all_parts[pipeline_rank] if gpc.is_rank_for_log(): logger.info(f"The layer sharding is {all_parts}.") models = [] if kwargs["checkpoint"] is True: kwargs["checkpoint_fraction"] = 1.0 else: kwargs["checkpoint_fraction"] = 0 for start, end in parts: kwargs["num_layers"] = end - start kwargs["first"] = start == 0 # If there is no content in the final layer, assign the last layer. kwargs["last"] = end == num_layers and len(all_parts[-1]) != 0 kwargs["device"] = device kwargs["start_layer_idx"] = start chunk = PackedFlashInternLm1D(**filter_kwargs(PackedFlashInternLm1D.__init__, kwargs)).to(device) models.append(chunk) torch.distributed.barrier() if len(models) == 1: model = models[0] else: model = nn.ModuleList(models) return model @MODEL_INITIALIZER.register_module(module_name=MODEL_TYPE) def build_model_with_cfg( num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False, num_layers=48, hidden_size=2048, vocab_size=50304, embed_grad_scale=1, parallel_output=True, num_attention_heads=32, mlp_ratio=4.0, residual_in_fp32=False, norm_type="rmsnorm", drop_rate=0, attn_drop_rate=0, apply_post_layer_norm=False, # pylint: disable=W0613 layer_norm_epsilon=1e-5, is_reward=False, dropout_selective_checkpoint=True, use_scaled_init: bool = True, use_swiglu: bool = True, use_flash_attn: bool = True, ): """ Builde model with config Args: num_chunks (int): The number of partitions in pipeline parallel. 1 by default. checkpoint (bool): Whether to use checkpointing to save VRAM. False by default. dtype (torch.dtype): The type of data. torch.float by default. embed_split_hidden (bool): Split the embedding layer in the hidden state dimention or vocabulary dimention. False by default. num_layers (int): The number of layer. 48 by default. hidden_size (int): The size of hidden state. 2048 by default. vocab_size (int): The size of vocabulary. 50304 by default. embed_grad_scale (float): Refer to GLM-130B, for training stability. 0.1 by default. parallel_output (bool): If it is necessary to collect the output of parallel computing. True by default. num_attention_heads (int): The number of attention head. 32 by default. mlp_ratio (int): The ratio of MLP layers. 4.0 by default. residual_in_fp32 (bool): Whether to use residual in fp32. False by default. It cannot be used temporarily because this parameter requires inconsistent data types to be passed between pipelines, which requires significant modifications to internlm. norm_type (str): Normalization type. Use RMSNorm or LayerNorm. "rmsnorm" by default. drop_rate (float): The dropout rate of input hidden state. 0 by default. attn_drop_rate (float): The dropout rate of attention module. 0 by default. apply_post_layer_norm (bool): Whether to apply post layer norm. False by default. layer_norm_epsilon (float): A value added to the denominator for numerical stability. 1e-5 by default. is_reward (bool): Whether to use reward model. False by default. dropout_selective_checkpoint (bool): It can only be enabled when checkpoint is disabled. True by default. use_scaled_init (bool): Whether to use scaled init. True by default. use_swiglu (bool): Whether to use swiglu. True by default. use_flash_attn (bool): Whether to use flash-attn. True by default. """ cfg = dict( hidden_size=hidden_size, num_attention_heads=num_attention_heads, checkpoint=checkpoint, dtype=dtype, embed_split_hidden=embed_split_hidden, vocab_size=vocab_size, embed_grad_scale=embed_grad_scale, parallel_output=parallel_output, mlp_ratio=mlp_ratio, residual_in_fp32=residual_in_fp32, norm_type=norm_type, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, layer_norm_epsilon=layer_norm_epsilon, is_reward=is_reward, dropout_selective_checkpoint=dropout_selective_checkpoint, use_scaled_init=use_scaled_init, use_swiglu=use_swiglu, use_flash_attn=use_flash_attn, ) return _build_generic_model_1d(num_layers=num_layers, num_chunks=num_chunks, **cfg)