TF32训练 ================== InternLM支持使用TF32训练模型。TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图: InternLM supports training models using TF32. TensorFloat-32 (TF32) is a computational format introduced by Nvidia for TensorCores on Ampere architecture GPUs. Here's a comparison of TF32 with other data formats: .. figure:: ../../imgs/tf32.png :scale: 50% :class: with-border 使用TF32的前置条件: Prerequisites for using TF32: input data must be of type FP32 (single-precision floating-point) and the computations should be matrix multiplication, convolution and so on. 1. 输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。 Ampere GPU 2. Ampere架构的GPU。 值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,为了区分不同的精度与计算格式( ``BF16`` 、``FP16`` 、``FP32`` 、``TF32`` ),InternLM支持用户在 ``model config`` 中传入 ``torch.tf32`` 来表示想要使用TF32加速运算,本质上数据类型依旧为 ``FP32``。 It is noticed that TF32 is an intermediate calculation format when employing TensorCores. InternLM allows users to speficy ``torch.tf32`` in the model config to using TF32 acceleration while dtype is still ``torch.float32``. .. code-block:: python model = dict( checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1] num_attention_heads=NUM_ATTENTION_HEAD, embed_split_hidden=True, vocab_size=VOCAB_SIZE, embed_grad_scale=1, parallel_output=True, hidden_size=HIDDEN_SIZE, num_layers=NUM_LAYER, mlp_ratio=MLP_RATIO, apply_post_layer_norm=False, dtype="torch.tf32", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32" norm_type="rmsnorm", layer_norm_epsilon=1e-5, use_flash_attn=True, num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used. ) InternLM会根据 ``model config`` 中的 ``dtype`` 字符串来判断真正的数据类型。InternLM通过设置以下变量来开启TF32训练。 InternLM enables TF32 training by setting the following variables. .. code-block:: python torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True