#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy import inspect import os import re import socket import time from collections import defaultdict from enum import Enum from typing import Callable, Dict, Union import torch from internlm.core.context import ParallelMode from internlm.core.context import global_context as gpc from internlm.core.trainer import TrainState from internlm.initialize.launch import get_config_value from internlm.initialize.legacy.launch import ( auto_resume_sanity_check, ckpt_info_sanity_check, ) from internlm.model.moe import MoE from internlm.monitor import send_alert_message from internlm.solver.optimizer import HybridZeroOptimizer, reload_zero_fp32_buff from internlm.utils.common import get_current_device from internlm.utils.logger import get_logger from internlm.utils.megatron_timers import megatron_timer as timer from internlm.utils.storage_manager import ( get_fns, get_storage_manager, init_storage_manager, llm_load, llm_save, try_get_storage_backend, ) from internlm.utils.timeout import llm_timeout logger = get_logger(__file__) class CheckpointSaveType(Enum): NORMAL_CHECKPOINT = 1 SNAPSHOT_CHECKPOINT = 2 class CheckpointLoadType(Enum): INTERNLM = "internlm" # The load method implemented by internlm by default does not use string representation types, # but uses enumeration types defined in advance. LOAD_TYPE_DICT = { "internlm": CheckpointLoadType.INTERNLM, } class CheckpointLoadContent: MODEL = "model" SAMPLER = "sampler" OPIMIZER = "optimizer" SCHEDULAER = "scheduler" class CheckpointLoadMethod: """The registration class of the checkpoint loading method, users can define their own custom ckpt loading methods.""" LOAD_FUNC_SIG = None LOAD_TYPE_FUNC = {} @staticmethod def convet_load_type(load_type: str) -> Union[CheckpointLoadType, str]: if load_type.lower() in LOAD_TYPE_DICT: # The ckpt load method implemented by internlm by default. return LOAD_TYPE_DICT[load_type.lower()] else: # If it is a user-defined field, we do not do any conversion and represent it as a string. return load_type @staticmethod def register_ckpt_load_type(load_type: Union[str, CheckpointLoadType], load_func: Callable): if load_type in CheckpointLoadMethod.LOAD_TYPE_FUNC and gpc.is_rank_for_log(): logger.warning(f"{load_type} has already been registered!") return CheckpointLoadMethod.LOAD_TYPE_FUNC.update({load_type: load_func}) if load_type == CheckpointLoadType.INTERNLM: CheckpointLoadMethod.LOAD_FUNC_SIG = inspect.signature(load_func) else: if inspect.signature(load_func) != CheckpointLoadMethod.LOAD_FUNC_SIG and gpc.is_rank_for_log(): logger.warning( f"The registered signature {inspect.signature(load_func)} of the loaded model is not same as: " f"{CheckpointLoadMethod.LOAD_FUNC_SIG}" ) @staticmethod def get_ckpt_load_type_func(load_type: Union[str, CheckpointLoadType]): return CheckpointLoadMethod.LOAD_TYPE_FUNC[load_type] class CheckpointLoadMask: """ According to the content field in the incoming ckpt_info, decide which components to load. """ LOAD_CONTENT_DICT = { "model": CheckpointLoadContent.MODEL, "sampler": CheckpointLoadContent.SAMPLER, "optimizer": CheckpointLoadContent.OPIMIZER, "scheduler": CheckpointLoadContent.SCHEDULAER, } def __init__(self, content: tuple) -> None: self.load_set = set(map(lambda x: x.lower(), content)) if "all" in self.load_set: self.load_set = set(CheckpointLoadMask.LOAD_CONTENT_DICT.values()) else: self.load_set = set(map(lambda x: CheckpointLoadMask.LOAD_CONTENT_DICT[x.lower()], content)) def need_load(self, content: CheckpointLoadContent): return content in self.load_set def not_only_load(self, content: CheckpointLoadContent): return content in self.load_set and len(self.load_set) > 1 def only_load(self, content: CheckpointLoadContent): return set((content,)) == self.load_set def __str__(self) -> str: return f"{self.load_set}." def __repr__(self) -> str: return f"{self.load_set}." def get_model_topology(model): """ Returns: { '{name}': {'dim': int} } where name is the name of the module, and all parameters under this module are concatenated along the dimension 'dim'. """ from flash_attn.modules.embedding import VocabParallelEmbedding topos = {} for name, module in model.named_modules(): # If it does not meet these conditions, it is shared between various tp/dp, and it is necessary to assert # that they are consistent. if isinstance(module, VocabParallelEmbedding): topos[name] = {"dim": 0} return topos def try_load_internlm_ckpt(ckpt_mm, load_info, train_state: TrainState): load_content_str = "" load_ckpt_folder = load_info["path"] load_content: CheckpointLoadMask = load_info["content"] if gpc.is_rank_for_log(): logger.info(f"Try load_ckpt_folder: {load_ckpt_folder}") if load_content.need_load(CheckpointLoadContent.MODEL): load_model_checkpoint(folder=load_ckpt_folder, model=ckpt_mm.model) load_content_str += f"{CheckpointLoadContent.MODEL}, " if load_content.not_only_load(CheckpointLoadContent.MODEL): # load training states. load_context(load_ckpt_folder, train_state) # load optimzier states. if load_content.need_load(CheckpointLoadContent.OPIMIZER): load_optimizer_checkpoint(load_ckpt_folder, ckpt_mm.optimizer) load_content_str += f"{CheckpointLoadContent.OPIMIZER}, " else: if gpc.is_rank_for_log(): logger.warning("CheckpointManager has no 'optimizer', skip reload optim checkpoint!") # load lr scheduler states. if load_content.need_load(CheckpointLoadContent.SCHEDULAER): if ckpt_mm.lr_scheduler: load_scheduler(load_ckpt_folder, ckpt_mm.lr_scheduler, ckpt_mm.optimizer, train_state) load_content_str += f"{CheckpointLoadContent.SCHEDULAER}, " else: if gpc.is_rank_for_log(): logger.warning("CheckpointManager has no 'lr_scheduler', skip reload lr_scheduler checkpoint!") # load dataloader sampler states. if load_content.need_load(CheckpointLoadContent.SAMPLER): if hasattr(train_state, "batch_sampler") and not isinstance( train_state.batch_sampler, torch.utils.data.sampler.BatchSampler ): load_sampler(load_ckpt_folder, ckpt_mm.train_dl.batch_sampler) # track the actual updates of sampler when using weighted sampling train_state.init_batch_sampler(ckpt_mm.train_dl.batch_sampler) load_content_str += f"{CheckpointLoadContent.SAMPLER}, " else: if gpc.is_rank_for_log(): logger.warning("CheckpointManager skip reload 'batch_sampler'") # reload data state dict. if hasattr(train_state, "data_state_dict"): ckpt_mm.train_dl.dataset.load_state_dict( llm_load(os.path.join(load_ckpt_folder, "sampler_0.pt")), ckpt_path=load_ckpt_folder ) load_content_str += f"{CheckpointLoadContent.SAMPLER}, " else: if gpc.is_rank_for_log(): logger.warning( "CheckpointManager has no 'data_state_dict', skip reload data_state_dict checkpoint!" ) return load_content_str def save_model_checkpoint(folder, model): """ Save the model according to the relationship between tp and dp. The principle is that the data of each tp will not be gathered and saved separately, which is equivalent to actual sharding. The saved weight is named - folder - model_tp{tp_rank}_pp{pp_rank}.pt If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading. Args: folder: The folder to save the model model: The model to be saved """ states = model.state_dict() # get non-expert parameters states = get_non_moe_state_dict(states) topo = get_model_topology(model) if folder is not None: dp_size = gpc.get_world_size(ParallelMode.DATA) tp_size = gpc.get_world_size(ParallelMode.TENSOR) dp_rank = gpc.get_local_rank(ParallelMode.DATA) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) # TODO In theory, we should also consider pp level, but since pp is generally a state across machines, # even if pp is not considered, it will definitely not be written on the same machine. should_save_rank_pair = set() # (tp_rank, dp_rank) for i in range(tp_size): should_save_rank_pair.add((i, i % dp_size)) if (tp_rank, dp_rank) in should_save_rank_pair: fn = f"model_tp{tp_rank}_pp{pp_rank}.pt" fp = os.path.join(folder, fn) llm_save(fp, saved_obj=states) topo_fn = f"topo_tp{tp_rank}_pp{pp_rank}.json" topo_fp = os.path.join(folder, topo_fn) llm_save(topo_fp, saved_obj=topo) # try to save expert parameter to separate files if model have moe layer expert_dp_size = gpc.get_world_size(ParallelMode.EXPERT_DATA) expert_dp_rank = gpc.get_local_rank(ParallelMode.EXPERT_DATA) should_save_rank_pair.clear() for i in range(tp_size): should_save_rank_pair.add((i, i % expert_dp_size)) if (tp_rank, expert_dp_rank) in should_save_rank_pair: try_save_moe_checkpoint(folder, model, tp_rank, pp_rank) torch.distributed.barrier() def load_model_checkpoint(folder, model): """ There should be weights with names similar to the following under the folder. - folder - model_tp{tp_rank}_pp{pp_rank}.pt If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading. """ tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) fns = get_fns(folder) max_pp, max_tp = 0, 0 for fn in fns: if fn.startswith("model_t") and not fn.endswith(".md5"): segements = os.path.splitext(fn)[0].split("_") max_pp = max(max_pp, int(segements[-1][2:])) max_tp = max(max_tp, int(segements[-2][2:])) assert ( pp_size == max_pp + 1 ), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines" assert ( tp_size == max_tp + 1 ), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism" should_load_name = f"model_tp{tp_rank}_pp{pp_rank}.pt" fp = os.path.join(folder, should_load_name) states = llm_load(fp, map_location=get_current_device()) """ # need convert the gate parameters to float32 (to fit deepspeed style mechanism), it may cause round-off in # gate.weight. The conversion will also be done when doing forward. so we can just comment it out. this make # the gate parameters to be float16 before forward. for key in list(states.keys()): if 'moe_layer.gate.wg.weight' in key: states[key] = states[key].float() print("load: ", states[key].float(),flush=True) """ # try to load expert parameter to separate files if model have moe layer try_load_moe_checkpoint(folder, model, states, tp_rank, pp_rank) missing_k, unexpected_keys = model.load_state_dict(states, strict=False) if len(missing_k) != 0: logger.warning(f"Warning: missing keys {missing_k}") if len(unexpected_keys) != 0: logger.warning(f"Warning: unexpected keys {unexpected_keys}") # avoid to cuda oom, Ref: https://discuss.pytorch.org/t/load-state-dict-causes-memory-leak/36189/11 del states torch.cuda.empty_cache() def try_save_moe_checkpoint(folder, model, tp_rank, pp_rank): # Using layer_#_expert_# to save the model's expert state_dict,a hack. pipeline_stage_size = gpc.config.model.num_layers // gpc.get_world_size(ParallelMode.PIPELINE) moe_layer_id = pp_rank * pipeline_stage_size for n_module, module in model.named_modules(): if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0: num_local_experts = module.num_local_experts expp_rank = gpc.get_local_rank(ParallelMode.EXPERT) # get all moe parameters moe_state_dict = {} for n, p in module.state_dict().items(): if "expert" in n and "moe_layer.gate.wg.weight" not in n: moe_state_dict[n_module + "." + n] = p moe_str_prefix = ".moe_layer.experts.experts." # Reorder the moe name rank, so that each checkpoint only has one expert experts_state_dict = defaultdict(dict) for key in list(moe_state_dict.keys()): m = re.match(f".*{moe_str_prefix}([0-9]+).*", key) local_expert_id = None if not m: logger.warning(f"No expert found in key {key}.") else: local_expert_id = m.group(1) global_expert_id = expp_rank * num_local_experts + int(local_expert_id) expert_key = key.replace(f"{moe_str_prefix}{local_expert_id}", f"{moe_str_prefix}{global_expert_id}") # truncating extra tensor (shared) storage truncated = moe_state_dict.pop(key).clone().detach() experts_state_dict[str(global_expert_id)][expert_key] = truncated # let save the moe parameters for global_expert_id, expert_state_dict in experts_state_dict.items(): # save the moe parameters fn = f"model_moe_layer{moe_layer_id}_expert{global_expert_id}_tp{tp_rank}.pt" fp = os.path.join(folder, fn) llm_save(fp, saved_obj=expert_state_dict) moe_layer_id += 1 def get_non_moe_state_dict(full_state_dict): """ Get the state dict of the non-moe layers """ for key in list(full_state_dict.keys()): if "expert" in key and "moe_layer.gate.wg.weight" not in key: full_state_dict.pop(key) return full_state_dict def save_optimizer_checkpoint(optim, state_path): """Store the state of the optimizer to the local file system or remote OSS. Args: optim (Optimizer) state_path (str): The state loading path of optimizer. """ # TODO sanity check for optimizer type zero_rank = gpc.get_local_rank(ParallelMode.ZERO1) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) zero_size = gpc.get_world_size(ParallelMode.ZERO1) tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) fp = f"optimizer_tp{tp_rank}_pp{pp_rank}_zo{zero_rank}.pt" states = optim.state_dict() if isinstance(optim, HybridZeroOptimizer): if gpc.get_global_rank() < zero_size * tp_size * pp_size: llm_save(os.path.join(state_path, fp), states) if "zero_devide_optim_plan" in states: params_per_rank_id_dict = states.pop("zero_devide_optim_plan") fp_meta = os.path.join(state_path, optim.rank_unique_id) llm_save(fp_meta, params_per_rank_id_dict) else: llm_save(os.path.join(state_path, fp), states) def try_load_moe_checkpoint(folder, model, state_dict, tp_rank, pp_rank): pipeline_stage_size = gpc.config.model.num_layers // gpc.get_world_size(ParallelMode.PIPELINE) moe_layer_id = pp_rank * pipeline_stage_size for _, module in model.named_modules(): if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0: num_local_experts = module.num_local_experts expp_rank = gpc.get_local_rank(ParallelMode.EXPERT) # loop all local_experts for local_expert_id in range(num_local_experts): global_expert_id = expp_rank * num_local_experts + local_expert_id fn = f"model_moe_layer{moe_layer_id}_expert{global_expert_id}_tp{tp_rank}.pt" fp = os.path.join(folder, fn) expert_state_dict = llm_load(fp, map_location=get_current_device()) # Updating global -> local expert ids moe_str_prefix = ".moe_layer.experts.experts." for key in list(expert_state_dict.keys()): local_key = key.replace(f"{moe_str_prefix}{global_expert_id}", f"{moe_str_prefix}{local_expert_id}") expert_state_dict[local_key] = expert_state_dict.pop(key) state_dict.update(expert_state_dict) moe_layer_id += 1 def load_optimizer_checkpoint(folder, optim): """Load the optimizer state from the local file system or remote object storage Service (OSS). Args: optim (Optimizer): optimizer folder (str): The FS/OSS path where the optimizer will be stored. """ fns = get_fns(folder) max_tp, max_pp, max_zero = 0, 0, 0 for fn in fns: if fn.startswith("optimizer_") and not fn.endswith(".md5"): _, tp, pp, zero = os.path.splitext(fn)[0].split("_") max_zero = max(max_zero, int(zero[2:])) max_tp = max(max_tp, int(tp[2:])) max_pp = max(max_pp, int(pp[2:])) zero_size = gpc.get_world_size(ParallelMode.ZERO1) zero_rank = gpc.get_local_rank(ParallelMode.ZERO1) tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) assert ( zero_size == max_zero + 1 ), f"The weights are save for {max_zero+1} data parallel, while current has {zero_size} zero broadcast range." assert ( pp_size == max_pp + 1 ), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines" assert ( tp_size == max_tp + 1 ), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism" fp = f"optimizer_tp{gpc.get_local_rank(ParallelMode.TENSOR)}_" fp += f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}_" fp += f"zo{zero_rank}.pt" states = llm_load(os.path.join(folder, fp), map_location=get_current_device()) if isinstance(optim, HybridZeroOptimizer): fp_meta = os.path.join(folder, optim.rank_unique_id) try: zero_devide_optim_plan = llm_load(fp_meta) states.update({"zero_devide_optim_plan": zero_devide_optim_plan}) except Exception as e: if gpc.is_rank_for_log(): logger.warning( f"Read zero optimzer split file '{fp_meta}', for '{e}'" f"Please check whether loading ckpts are saved with the HybridZeroOptimizer." ) optim.load_state_dict(states) del states torch.cuda.empty_cache() def load_sampler(ckpt_path: str, sampler): sampler_states = llm_load(os.path.join(ckpt_path, "sampler.pt")) sampler.load_state_dict(sampler_states) if gpc.is_rank_for_log(): pstate = copy.deepcopy(sampler_states) pstate.pop("indices", None) pstate.pop("rng_state", None) logger.info(f"reload sampler_states:{pstate}") torch.cuda.empty_cache() def load_context(ckpt_path: str, train_state: TrainState): context_stuffs = llm_load(os.path.join(ckpt_path, "context.pt")) train_state.load_state_dict(context_stuffs) if gpc.is_rank_for_log(): logger.info(f"reload train_state:{train_state}") torch.cuda.empty_cache() def load_scheduler(ckpt_path: str, lr_scheduler, optimizer, train_state: TrainState): learning_rate = train_state.lr scheduler_states = llm_load(os.path.join(ckpt_path, "schedulder.pt")) if learning_rate != scheduler_states["base_lrs"][0] and gpc.is_rank_for_log(): logger.warning( f"Using new learning rate {learning_rate} to replace old learn rate {scheduler_states['base_lrs'][0]}." ) base_lrs = copy.deepcopy(scheduler_states["base_lrs"]) scheduler_states["base_lrs"] = [learning_rate] * len(scheduler_states["base_lrs"]) if "after_scheduler_dict" in scheduler_states: scheduler_states["after_scheduler_dict"]["base_lrs"] = [learning_rate] * len( scheduler_states["after_scheduler_dict"]["base_lrs"] ) lr_scheduler.load_state_dict(scheduler_states) lr_scheduler.last_epoch = train_state.step_count + 1 ratios = [learning_rate / lr for lr in base_lrs] for idx, param_group in enumerate(optimizer.param_groups): param_group["lr"] = param_group["lr"] * ratios[idx] torch.cuda.empty_cache() if gpc.is_rank_for_log(): logger.info(f"reload load_scheduler:{lr_scheduler}") class CheckpointManager: """StorageManagerContext""" def __init__( self, ckpt_config, model, train_dl=None, optimizer=None, lr_scheduler=None, model_config=None, model_config_file=None, feishu_address=None, ) -> None: """ CheckpointManager is used to decide when to store ckpt. If it is an asynchronous upload mode, you must call wait_async_upload_finish at the end of the program to wait for the asynchronous ckpt upload to complete. Args: ckpt_config (dict): model checkpoint config. model (nn.module): model obj. optimizer (object): optimizer obj. lr_scheduler (object): lr_scheduler obj. model_config (dict): model config. """ self.enable_save_ckpt = get_config_value(ckpt_config, "enable_save_ckpt", False) self.checkpoint_every = get_config_value(ckpt_config, "checkpoint_every", 100) self.save_ckpt_folder = get_config_value(ckpt_config, "save_ckpt_folder", None) self.oss_snapshot_freq: int = get_config_value(ckpt_config, "oss_snapshot_freq", 50) self.stop_file_path = get_config_value(ckpt_config, "stop_file_path", None) if self.save_ckpt_folder: self.snapshot_ckpt_folder = get_config_value( ckpt_config, "snapshot_ckpt_folder", os.path.join(self.save_ckpt_folder, "snapshot") ) self.async_upload_tmp_folder = get_config_value( ckpt_config, "async_upload_tmp_folder", "/dev/shm/internlm_tmp_ckpt/" ) else: self.snapshot_ckpt_folder = None self.async_upload_tmp_folder = None self.async_upload = get_config_value(ckpt_config, "async_upload", False) # initialization storage manager init_storage_manager(self.enable_save_ckpt, self.async_upload_tmp_folder, self.async_upload) self.feishu_address = feishu_address self.storage_manager = get_storage_manager() self.snapshot_counter = 0 self.model = model self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.train_dl = train_dl self.model_config = model_config self.model_config_file = model_config_file # Register defalut internlm ckpt load type. self.defalut_load_type_func = {CheckpointLoadType.INTERNLM: try_load_internlm_ckpt} for ckpt_load_type in CheckpointLoadType: CheckpointLoadMethod.register_ckpt_load_type(ckpt_load_type, self.defalut_load_type_func[ckpt_load_type]) # Init alter file. if self.stop_file_path and gpc.get_global_rank() == 0: dir_path = os.path.dirname(self.stop_file_path) if dir_path != "" and not os.path.exists(dir_path): os.makedirs(dir_path) with open(self.stop_file_path, "w", encoding="utf-8") as f: f.write("0") self.load_ckpt_info = get_config_value(ckpt_config, "load_ckpt_info", None) if self.load_ckpt_info is None: # (legacy): Try Compatible with old interfaces self.load_ckpt_info = ckpt_info_sanity_check(ckpt_config) # Auto-reload latest checkpoint, it will overwrite the setting of 'load_ckpt_info'. self.auto_resume = get_config_value(ckpt_config, "auto_resume", None) if self.auto_resume is None: # (legacy): Try Compatible with old interfaces self.auto_resume = auto_resume_sanity_check(ckpt_config) if self.auto_resume: self.load_ckpt_info = self.query_lastest_ckpt() if self.stop_file_path is None and gpc.is_rank_for_log(): logger.warning("no set stop_file_path, quit_signal_handler is disable") # convert to internal representation if self.load_ckpt_info: assert ( "path" in self.load_ckpt_info and "content" in self.load_ckpt_info and "ckpt_type" in self.load_ckpt_info ), "please set content in ckpt setting, eg: ckpt = dict(path='', content=['model'], ckpt_type='internlm')" # replace load_ckpt self.load_ckpt_info["content"] = CheckpointLoadMask(self.load_ckpt_info["content"]) self.load_ckpt_info["ckpt_type"] = CheckpointLoadMethod.convet_load_type(self.load_ckpt_info["ckpt_type"]) # test storage setting is ok. if self.enable_save_ckpt: self.try_ping_storage() def quit_signal_handler(self, train_state) -> bool: """ Exit signal detection function, if we write the exit step in the 'QUIT_FILE_PATH' file, all ranks will save ckpt and exit. Negative integer step means save ckpt. Positive integer step means save ckpt and quit. Args: train_state (TrainState): Returns: bool: whether to quit. """ now_break, now_save_ckpt, save_type = False, False, CheckpointSaveType.NORMAL_CHECKPOINT if self.stop_file_path is None: return now_break, now_save_ckpt, save_type with torch.no_grad(): action_step_t = torch.zeros((1,), dtype=torch.int64).cuda() if gpc.get_global_rank() == 0: with open(self.stop_file_path, "r+", encoding="utf-8") as f: f.seek(0) msg = f.read() action_step_t.fill_(int(msg)) torch.distributed.broadcast(action_step_t, src=0) action_step = action_step_t.item() del action_step_t if action_step < 0 and abs(action_step) == train_state.step_count: now_save_ckpt = True if action_step > 0 and action_step == train_state.step_count: now_break, now_save_ckpt = True, True if action_step != 0 and gpc.is_rank_for_log(): msg = "Stop" if action_step > 0 else "Save" action_step = abs(action_step) if train_state.step_count <= action_step: if self.feishu_address: send_alert_message( address=self.feishu_address, message=f"training will {msg} at step_count {action_step}!\ now step_count is {train_state.step_count}", ) return now_break, now_save_ckpt, save_type def is_now_to_save_ckpt(self, train_state) -> (bool, CheckpointSaveType, bool): save_ckpts, save_type, now_break = False, CheckpointSaveType.NORMAL_CHECKPOINT, False if self.oss_snapshot_freq > 1 and train_state.step_count % self.oss_snapshot_freq == 0: save_ckpts, save_type = True, CheckpointSaveType.SNAPSHOT_CHECKPOINT if train_state.step_count % self.checkpoint_every == 0: save_ckpts, save_type = True, CheckpointSaveType.NORMAL_CHECKPOINT now_break, singal_save_ckpts, singal_save_type = self.quit_signal_handler(train_state) if save_ckpts is False: save_ckpts = singal_save_ckpts save_type = singal_save_type return save_ckpts, save_type, now_break def try_save_checkpoint(self, train_state): if not self.enable_save_ckpt: return False save_ckpts, save_type, now_break = self.is_now_to_save_ckpt(train_state) if save_ckpts: # Wait for the previous round of asynchronous upload storage to complete. self.storage_manager.wait() if save_type == CheckpointSaveType.SNAPSHOT_CHECKPOINT: # Snapshot number, with only two snapshots written alternately. self.snapshot_counter = (self.snapshot_counter + 1) % 2 save_ckpt_folder = os.path.join(self.snapshot_ckpt_folder, f"{self.snapshot_counter}") else: save_ckpt_folder = os.path.join(self.save_ckpt_folder, str(train_state.step_count)) self.save_checkpoint( folder=save_ckpt_folder, model=self.model, optimizer=self.optimizer, scheduler=self.lr_scheduler, train_state=train_state, model_config=self.model_config, model_config_file=self.model_config_file, ) return now_break def wait_async_upload_finish(self): """wait for all checkpoint uploads to be completed""" self.storage_manager.wait() torch.distributed.barrier() def query_latest_snapshot_step_boto3(self): """query_latest_snapshot_step_boto3 Returns: Tuple(str, int): path of latest ckpt and ckpt step, if not found, None will return. """ ckpt_list = self.storage_manager.get_fns(self.save_ckpt_folder) if ckpt_list is None or len(ckpt_list) == 0: return None, None max_normal_step = 0 # Return ckpt_list look like: ['pings', 'snapshot', '4'] # Here we only try to find the ckpt folder named after step, ignoring snapshot and other folders. ckpt_list = [int(fn.strip("/")) for fn in ckpt_list if fn.strip("/").isdigit()] if len(ckpt_list) == 0: if gpc.is_rank_for_log(): logger.warning("No available normal checkpoint found. Check your checkpoint path.") else: if gpc.is_rank_for_log(): logger.info(f"Found available normal checkpoint: {ckpt_list}") ckpt_list.sort(reverse=True) for ckpt in ckpt_list: fns_list = self.storage_manager.get_fns(os.path.join(self.save_ckpt_folder, str(ckpt))) for fn in fns_list: if fn.endswith(".step"): max_normal_step = ckpt break if max_normal_step != 0: break max_normal_step = ckpt_list[0] load_normal_ckpt_path = os.path.join(self.save_ckpt_folder, str(max_normal_step)) snapshot_path_0 = os.path.join(self.save_ckpt_folder, "snapshot", "0") snapshot_path_1 = os.path.join(self.save_ckpt_folder, "snapshot", "1") ckpt_list_0 = self.storage_manager.get_fns(snapshot_path_0) ckpt_list_1 = self.storage_manager.get_fns(snapshot_path_1) def found_latest_snapshot(_ckpt_list): _max_step_snapshot = 0 if _ckpt_list: for ckpt in _ckpt_list: ckpt = ckpt.strip("/") if ckpt.endswith(".step"): _max_step_snapshot = max(_max_step_snapshot, int(ckpt.split(".")[0])) return _max_step_snapshot max_step_0 = found_latest_snapshot(ckpt_list_0) max_step_1 = found_latest_snapshot(ckpt_list_1) if sum([max_step_0, max_step_1, max_normal_step]) == 0: return None, None else: snap_load_path = snapshot_path_0 if max_step_0 > max_step_1 else snapshot_path_1 snap_step = max(max_step_0, max_step_1) load_path = snap_load_path if snap_step > max_normal_step else load_normal_ckpt_path return load_path, max(snap_step, max_normal_step) def query_latest_snapshot_step_local(self): max_step, max_step_path = 0, None save_ckpt_folder = self.save_ckpt_folder.split(":")[1] for root, _, files in os.walk(save_ckpt_folder, followlinks=True): for fn in files: fn = fn.strip("/") if fn.endswith(".step"): # We assume that both internlm ckpt and snapshot ckpt will store the '.step' file # as an integrity flag. step = int(fn.rsplit(".", maxsplit=1)[0]) if max_step < step: max_step = step max_step_path = root return max_step_path, max_step def query_lastest_ckpt(self): latest_ckpt, step = None, -1 # Training was automatically restarted by the process, forcing the latest snapshot to be read. if self.save_ckpt_folder: backend, _ = try_get_storage_backend(self.save_ckpt_folder) if backend == "boto3": latest_ckpt, step = self.query_latest_snapshot_step_boto3() if latest_ckpt and not latest_ckpt.startswith("boto3:"): latest_ckpt = ":".join(["boto3", latest_ckpt]) elif backend == "local": latest_ckpt, step = self.query_latest_snapshot_step_local() if latest_ckpt and not latest_ckpt.startswith("local:"): latest_ckpt = ":".join(["local", latest_ckpt]) if gpc.is_rank_for_log(): logger.info(f"Found latest ckpt {latest_ckpt if latest_ckpt else 'None'}, step: {step}...") return dict(path=latest_ckpt, content=("all",), ckpt_type="internlm") def try_resume_training(self, train_state: TrainState, current_time=""): if self.load_ckpt_info is None or self.load_ckpt_info["path"] is None: if gpc.is_rank_for_log(): logger.info( f"===========New Run {current_time} on host:{socket.gethostname()},rank={gpc.get_global_rank()}," f"tp={gpc.get_local_rank(ParallelMode.TENSOR)},pp={gpc.get_local_rank(ParallelMode.PIPELINE)}," f"dp={gpc.get_local_rank(ParallelMode.DATA)}===========" ) else: load_path = self.load_ckpt_info["path"] load_content = self.load_ckpt_info["content"] load_type = self.load_ckpt_info["ckpt_type"] load_func = CheckpointLoadMethod.get_ckpt_load_type_func(load_type) load_content_str = load_func(self, self.load_ckpt_info, train_state) # If we only load model weight, we need rewrite zero optim's fp32 buffer. if load_content.only_load(CheckpointLoadContent.MODEL) and isinstance(self.optimizer, HybridZeroOptimizer): reload_zero_fp32_buff(self.optimizer) if gpc.is_rank_for_log(): logger.info(f"load_ckpt_info : {self.load_ckpt_info}") logger.info( f"===========Resume training from `{load_path}` {current_time} on host:" f"{socket.gethostname()}===========" ) if load_content_str: logger.info(f"===========Load contents are: {load_content_str}") @llm_timeout(func_name="save_checkpoint") def save_checkpoint( self, folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None, model_config_file: str = None, ): """ Save checkpoint to the given folder path. """ start = time.time() self.set_save_folder(folder, train_state.step_count) torch.cuda.synchronize() torch.distributed.barrier() if gpc.is_rank_for_log(): logger.info(f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count}...") timer("save-model").start() save_model_checkpoint(folder=folder, model=model) timer("save-model").stop() timer("save-optimizer").start() save_optimizer_checkpoint(optim=optimizer, state_path=folder) timer("save-optimizer").stop() if ( hasattr(train_state, "data_state_dict") and gpc.get_local_rank(ParallelMode.TENSOR) == 0 and gpc.get_local_rank(ParallelMode.PIPELINE) == 0 ): llm_save( os.path.join(folder, f"sampler_{gpc.get_local_rank(ParallelMode.DATA)}.pt"), saved_obj=train_state.data_state_dict, ) if gpc.is_rank_for_log(): if scheduler: scheduler_states = scheduler.state_dict() llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states) if hasattr(train_state, "batch_sampler") and not isinstance( train_state.batch_sampler, torch.utils.data.sampler.BatchSampler ): sampler_state = train_state.batch_sampler.state_dict() llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state) llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict()) if model_config is not None: # Model configuration dictionary. llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config) if model_config_file is not None: # The complete training config file content, stored in binary format. llm_save(os.path.join(folder, "config_file.pt"), saved_obj=model_config_file) torch.distributed.barrier() if gpc.is_rank_for_log(): timer.log(["save-model", "save-optimizer"], logger=logger) logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s") if self.storage_manager.async_mode is False: llm_save( os.path.join(folder, f"{train_state.step_count}.step"), saved_obj=dict({"step": train_state.step_count}), ) def set_save_folder(self, folder, step): self.storage_manager.latest_save_folder = folder self.storage_manager.latest_save_step = step def try_ping_storage(self): if gpc.get_global_rank() % 8 == 0: buff = torch.ones((1, 64, 64), dtype=torch.bfloat16) test_fn = os.path.join(self.save_ckpt_folder, f"pings/{socket.gethostname()}.ping") self.storage_manager.save(test_fn, buff) self.storage_manager.wait() self.storage_manager.load(test_fn) del buff