#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy import fcntl import os import re import socket import time from collections import defaultdict from enum import Enum from typing import Dict import torch from internlm.core.context import ParallelMode from internlm.core.context import global_context as gpc from internlm.core.trainer import TrainState from internlm.model.moe import MoE from internlm.monitor import send_alert_message from internlm.solver.optimizer import HybridZeroOptimizer from internlm.utils.common import get_current_device from internlm.utils.logger import get_logger from internlm.utils.megatron_timers import megatron_timer as timer from internlm.utils.storage_manager import ( get_fns, get_storage_manager, llm_load, llm_save, ) logger = get_logger(__file__) class CheckpointType(Enum): NORMAL_CHECKPOINT = 1 SNAPSHOT_CHECKPOINT = 2 def get_model_topology(model): """ Returns: { '{name}': {'dim': int} } where name is the name of the module, and all parameters under this module are concatenated along the dimension 'dim'. """ from flash_attn.modules.embedding import VocabParallelEmbedding topos = {} for name, module in model.named_modules(): # If it does not meet these conditions, it is shared between various tp/dp, and it is necessary to assert # that they are consistent. if isinstance(module, VocabParallelEmbedding): topos[name] = {"dim": 0} return topos def save_model_checkpoint(folder, model): """ Save the model according to the relationship between tp and dp. The principle is that the data of each tp will not be gathered and saved separately, which is equivalent to actual sharding. The saved weight is named - folder - model_tp{tp_rank}_pp{pp_rank}.pt If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading. Args: folder: The folder to save the model model: The model to be saved """ states = model.state_dict() # get non-moe parameters states = get_non_moe_state_dict(states) topo = get_model_topology(model) if folder is not None: dp_size = gpc.get_world_size(ParallelMode.DATA) tp_size = gpc.get_world_size(ParallelMode.TENSOR) dp_rank = gpc.get_local_rank(ParallelMode.DATA) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) # TODO In theory, we should also consider pp level, but since pp is generally a state across machines, # even if pp is not considered, it will definitely not be written on the same machine. should_save_rank_pair = set() # (tp_rank, dp_rank) for i in range(tp_size): should_save_rank_pair.add((i, i % dp_size)) if (tp_rank, dp_rank) in should_save_rank_pair: fn = f"model_tp{tp_rank}_pp{pp_rank}.pt" fp = os.path.join(folder, fn) llm_save(fp, saved_obj=states) topo_fn = f"topo_tp{tp_rank}_pp{pp_rank}.json" topo_fp = os.path.join(folder, topo_fn) llm_save(topo_fp, saved_obj=topo) # move the judgement logic into save_moe_checkpoint(.) try_save_moe_checkpoint(folder, model) torch.distributed.barrier() def load_model_checkpoint(folder, model): """ There should be weights with names similar to the following under the folder. - folder - model_tp{tp_rank}_pp{pp_rank}.pt If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading. """ tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) fns = get_fns(folder) max_pp, max_tp = 0, 0 for fn in fns: if fn.startswith("model_t") and not fn.endswith(".md5"): segements = os.path.splitext(fn)[0].split("_") max_pp = max(max_pp, int(segements[-1][2:])) max_tp = max(max_tp, int(segements[-2][2:])) assert ( pp_size == max_pp + 1 ), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines" assert ( tp_size == max_tp + 1 ), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism" should_load_name = f"model_tp{tp_rank}_pp{pp_rank}.pt" fp = os.path.join(folder, should_load_name) states = llm_load(fp, map_location=get_current_device()) """ # need convert the gate parameters to float32 (to fit deepspeed style mechanism), it may cause round-off in # gate.weight. The conversion will also be done when doing forward. so we can just comment it out. this make # the gate parameters to be float16 before forward. for key in list(states.keys()): if 'moe_layer.gate.wg.weight' in key: states[key] = states[key].float() print("load: ", states[key].float(),flush=True) """ try_load_moe_checkpoint(folder, model, states) missing_k, unexpected_keys = model.load_state_dict(states, strict=False) if len(missing_k) != 0: logger.warning(f"Warning: missing keys {missing_k}") if len(unexpected_keys) != 0: logger.warning(f"Warning: unexpected keys {unexpected_keys}") # avoid to cuda oom, Ref: https://discuss.pytorch.org/t/load-state-dict-causes-memory-leak/36189/11 del states torch.cuda.empty_cache() def try_save_moe_checkpoint(folder, model): # Using layer_#_expert_# to save the model's expert state_dict,a hack. moe_layer_id = 0 for n_module, module in model.named_modules(): if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0: num_local_experts = module.num_local_experts expp_rank = gpc.get_local_rank(ParallelMode.EXPERT) # get all moe parameters moe_state_dict = {} for n, p in module.state_dict().items(): if "expert" in n and "moe_layer.gate.wg.weight" not in n: moe_state_dict[n_module + "." + n] = p moe_str_prefix = ".moe_layer.experts.experts." # Reorder the moe name rank, so that each checkpoint only has one expert experts_state_dict = defaultdict(dict) for key in list(moe_state_dict.keys()): m = re.match(f".*{moe_str_prefix}([0-9]+).*", key) local_expert_id = None if not m: logger.warning(f"No expert found in key {key}.") else: local_expert_id = m.group(1) global_expert_id = expp_rank * num_local_experts + int(local_expert_id) expert_key = key.replace(f"{moe_str_prefix}{local_expert_id}", f"{moe_str_prefix}{global_expert_id}") # truncating extra tensor (shared) storage truncated = moe_state_dict.pop(key).clone().detach() experts_state_dict[str(global_expert_id)][expert_key] = truncated # let save the moe parameters for global_expert_id, expert_state_dict in experts_state_dict.items(): # save the moe parameters fn = f"model_moe_layer{moe_layer_id}_expert{global_expert_id}.pt" fp = os.path.join(folder, fn) llm_save(fp, saved_obj=expert_state_dict) moe_layer_id += 1 def get_non_moe_state_dict(full_state_dict): """ Get the state dict of the non-moe layers """ for key in list(full_state_dict.keys()): if "expert" in key and "moe_layer.gate.wg.weight" not in key: full_state_dict.pop(key) return full_state_dict def save_optimizer_checkpoint(optim, state_path): """Store the state of the optimizer to the local file system or remote OSS. Args: optim (Optimizer) state_path (str): The state loading path of optimizer. """ # TODO sanity check for optimizer type zero_rank = gpc.get_local_rank(ParallelMode.ZERO1) tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE) tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) fp = f"optimizer_tp{tp_rank}_pp{pp_rank}_zo{zero_rank}.pt" states = optim.state_dict() if isinstance(optim, HybridZeroOptimizer): if gpc.get_global_rank() < optim.zero_world_size * tp_size * pp_size: llm_save(os.path.join(state_path, fp), states) if "zero_devide_optim_plan" in states: params_per_rank_id_dict = states.pop("zero_devide_optim_plan") fp_meta = os.path.join(state_path, optim.rank_unique_id) llm_save(fp_meta, params_per_rank_id_dict) else: llm_save(os.path.join(state_path, fp), states) def try_load_moe_checkpoint(folder, model, state_dict): moe_layer_id = 0 for _, module in model.named_modules(): if isinstance(module, MoE): # and deepspeed.comm.get_rank() == 0: num_local_experts = module.num_local_experts expp_rank = gpc.get_local_rank(ParallelMode.EXPERT) # loop all local_experts for local_expert_id in range(num_local_experts): global_expert_id = expp_rank * num_local_experts + local_expert_id fn = f"model_moe_layer{moe_layer_id}_expert{global_expert_id}.pt" fp = os.path.join(folder, fn) expert_state_dict = llm_load(fp, map_location=get_current_device()) # Updating global -> local expert ids moe_str_prefix = ".moe_layer.experts.experts." for key in list(expert_state_dict.keys()): local_key = key.replace(f"{moe_str_prefix}{global_expert_id}", f"{moe_str_prefix}{local_expert_id}") expert_state_dict[local_key] = expert_state_dict.pop(key) state_dict.update(expert_state_dict) moe_layer_id += 1 def load_optimizer_checkpoint(folder, optim): """Load the optimizer state from the local file system or remote object storage Service (OSS). Args: optim (Optimizer): optimizer folder (str): The FS/OSS path where the optimizer will be stored. """ fns = get_fns(folder) max_tp, max_pp, max_zero = 0, 0, 0 for fn in fns: if fn.startswith("optimizer_") and not fn.endswith(".md5"): _, tp, pp, zero = os.path.splitext(fn)[0].split("_") max_zero = max(max_zero, int(zero[2:])) max_tp = max(max_tp, int(tp[2:])) max_pp = max(max_pp, int(pp[2:])) zero_size = gpc.get_world_size(ParallelMode.ZERO1) zero_rank = gpc.get_local_rank(ParallelMode.ZERO1) tp_size = gpc.get_world_size(ParallelMode.TENSOR) pp_size = gpc.get_world_size(ParallelMode.PIPELINE) assert ( zero_size == max_zero + 1 ), f"The weights are save for {max_zero+1} data parallel, while current has {zero_size} zero broadcast range." assert ( pp_size == max_pp + 1 ), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines" assert ( tp_size == max_tp + 1 ), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism" fp = f"optimizer_tp{gpc.get_local_rank(ParallelMode.TENSOR)}_" fp += f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}_" fp += f"zo{zero_rank}.pt" states = llm_load(os.path.join(folder, fp), map_location=get_current_device()) if isinstance(optim, HybridZeroOptimizer): fp_meta = os.path.join(folder, optim.rank_unique_id) try: zero_devide_optim_plan = llm_load(fp_meta) states.update({"zero_devide_optim_plan": zero_devide_optim_plan}) except Exception as e: logger.warning( f"Read zero optimzer split file '{fp_meta}', for '{e}'" f"Please check whether loading ckpts are saved with the HybridZeroOptimizer." ) optim.load_state_dict(states) del states torch.cuda.empty_cache() def load_sampler(ckpt_path: str, sampler): sampler_states = llm_load(os.path.join(ckpt_path, "sampler.pt")) sampler.load_state_dict(sampler_states) if gpc.is_rank_for_log(): pstate = copy.deepcopy(sampler_states) pstate.pop("indices") pstate.pop("rng_state") logger.info(f"reload sampler_states:{pstate}") torch.cuda.empty_cache() def load_context(ckpt_path: str, train_dl, train_state: TrainState): context_stuffs = llm_load(os.path.join(ckpt_path, "context.pt")) train_state.load_state_dict(context_stuffs, train_dl) if gpc.is_rank_for_log(): logger.info(f"reload train_state:{train_state}") torch.cuda.empty_cache() def load_scheduler(ckpt_path: str, lr_scheduler, optimizer, learning_rate, train_state: TrainState): scheduler_states = llm_load(os.path.join(ckpt_path, "schedulder.pt")) if learning_rate != scheduler_states["base_lrs"][0] and gpc.is_rank_for_log(): logger.warning( f"Using new learning rate {learning_rate} to replace old learn rate {scheduler_states['base_lrs'][0]}." ) base_lrs = copy.deepcopy(scheduler_states["base_lrs"]) scheduler_states["base_lrs"] = [learning_rate] * len(scheduler_states["base_lrs"]) if "after_scheduler_dict" in scheduler_states: scheduler_states["after_scheduler_dict"]["base_lrs"] = [learning_rate] * len( scheduler_states["after_scheduler_dict"]["base_lrs"] ) lr_scheduler.load_state_dict(scheduler_states) lr_scheduler.last_epoch = train_state.step_count + 1 ratios = [learning_rate / lr for lr in base_lrs] for idx, param_group in enumerate(optimizer.param_groups): param_group["lr"] = param_group["lr"] * ratios[idx] torch.cuda.empty_cache() if gpc.is_rank_for_log(): logger.info(f"reload load_scheduler:{lr_scheduler}") class CheckpointManager: """StorageManagerContext""" def __init__(self, ckpt_config, model, model_config, feishu_address=None) -> None: """ CheckpointManager is used to decide when to store ckpt. If it is an asynchronous upload mode, you must call wait_async_upload_finish at the end of the program to wait for the asynchronous ckpt upload to complete. Args: ckpt_config (dict): model checkpoint config. model (nn.module): model obj optimizer (object): optimzier obj. lr_scheduler (object): lr_scheduler obj. model_config (dict): model config. """ self.enable_save_ckpt = ckpt_config.enable_save_ckpt self.checkpoint_every = ckpt_config.checkpoint_every self.save_ckpt_folder = ckpt_config.save_ckpt_folder self.snapshot_ckpt_folder = ckpt_config.snapshot_ckpt_folder self.oss_snapshot_freq: int = ckpt_config.oss_snapshot_freq self.stop_file_path = ckpt_config.stop_file_path self.load_model_only_folder = ckpt_config.load_model_only_folder self.feishu_address = feishu_address self.storage_manager = get_storage_manager() self.snapshot_counter = 0 self.load_optimizer = gpc.config.ckpt.load_optimizer self.model = model self.model_config = model_config if self.stop_file_path and gpc.get_global_rank() == 0: dir_path = os.path.dirname(self.stop_file_path) if dir_path != "" and not os.path.exists(dir_path): os.makedirs(dir_path) with open(self.stop_file_path, "w", encoding="utf-8") as f: f.write("0") if ckpt_config.load_given_ckpt is False: # Priority: load_given_ckpt(True) > latest_checkpoint > load_model_only_folder latest_ckpt_path = self.query_lastest_ckpt() if latest_ckpt_path: self.load_ckpt_folder = latest_ckpt_path else: # At this time, we have to load model init weights and train from step 0. self.load_ckpt_folder = self.load_model_only_folder else: self.load_ckpt_folder = ckpt_config.load_ckpt_folder if gpc.is_rank_for_log(): logger.info(f"load_ckpt_folder will set to :'{self.load_ckpt_folder}'") if self.stop_file_path is None: logger.warning("no set stop_file_path, quit_signal_handler is disable") def quit_signal_handler(self, train_state) -> bool: """ Exit signal detection function, if we write the exit step in the 'QUIT_FILE_PATH' file, all ranks will save ckpt and exit. Negative integer step means save ckpt. Positive integer step means save ckpt and quit. Args: train_state (TrainState): Returns: bool: whether to quit. """ now_break, now_save_ckpt, save_type = False, False, CheckpointType.NORMAL_CHECKPOINT if self.stop_file_path is None: return now_break, now_save_ckpt, save_type with open(self.stop_file_path, "a+", encoding="utf-8") as f: fcntl.flock(f, fcntl.LOCK_EX) f.seek(0) msg = f.read() fcntl.flock(f, fcntl.LOCK_UN) action_step = int(msg) if action_step < 0 and abs(action_step) == train_state.step_count: now_save_ckpt = True if action_step > 0 and action_step == train_state.step_count: now_break, now_save_ckpt = True, True if action_step != 0 and gpc.is_rank_for_log(): msg = "Stop" if action_step > 0 else "Save" action_step = abs(action_step) if train_state.step_count <= action_step: if self.feishu_address: send_alert_message( address=self.feishu_address, message=f"training will {msg} at step_count {action_step}!\ now step_count is {train_state.step_count}", ) return now_break, now_save_ckpt, save_type def try_save_checkpoint(self, train_state): if not self.enable_save_ckpt: return False save_ckpts, save_type = False, CheckpointType.NORMAL_CHECKPOINT if self.oss_snapshot_freq > 1 and train_state.step_count % self.oss_snapshot_freq == 0: save_ckpts, save_type = True, CheckpointType.SNAPSHOT_CHECKPOINT if train_state.step_count % self.checkpoint_every == 0: save_ckpts, save_type = True, CheckpointType.NORMAL_CHECKPOINT now_break, singal_save_ckpts, singal_save_type = self.quit_signal_handler(train_state) if save_ckpts is False: save_ckpts = singal_save_ckpts save_type = singal_save_type if save_ckpts: # Wait for the previous round of asynchronous upload storage to complete. self.storage_manager.wait() if save_type == CheckpointType.SNAPSHOT_CHECKPOINT: # Snapshot number, with only two snapshots written alternately. self.snapshot_counter = (self.snapshot_counter + 1) % 2 save_ckpt_folder = os.path.join(self.snapshot_ckpt_folder, f"{self.snapshot_counter}") else: save_ckpt_folder = os.path.join(self.save_ckpt_folder, str(train_state.step_count)) self.save_checkpoint( folder=save_ckpt_folder, model=self.model, optimizer=self.optimizer, scheduler=self.lr_scheduler, train_state=train_state, model_config=self.model_config, ) return now_break def wait_async_upload_finish(self): """wait for all checkpoint uploads to be completed""" self.storage_manager.wait() torch.distributed.barrier() def query_latest_snapshot_step_boto3(self): """query_latest_snapshot_step_boto3 Returns: Tuple(str, int): path of latest ckpt and ckpt step, if not found, None will return. """ ckpt_list = self.storage_manager.get_fns(self.save_ckpt_folder) if len(ckpt_list) == 0: return None, None max_normal_step = 0 ckpt_list = list(map(lambda a: int(a.strip("/")) if a.strip("/").isdigit() else 0, ckpt_list)) ckpt_list.sort(reverse=True) for ckpt in ckpt_list: fns_list = self.storage_manager.get_fns(os.path.join(self.save_ckpt_folder, str(ckpt))) for fn in fns_list: if fn.endswith(".step"): max_normal_step = ckpt break if max_normal_step != 0: break max_normal_step = ckpt_list[0] load_normal_ckpt_path = os.path.join(self.save_ckpt_folder, str(max_normal_step)) snapshot_path_0 = os.path.join(self.save_ckpt_folder, "snapshot", "0") snapshot_path_1 = os.path.join(self.save_ckpt_folder, "snapshot", "1") ckpt_list_1 = self.storage_manager.get_fns(snapshot_path_0) ckpt_list_2 = self.storage_manager.get_fns(snapshot_path_1) max_step_0, max_step_1 = 0, 0 for ckpt in ckpt_list_1: ckpt = ckpt.strip("/") if ckpt.endswith(".step"): max_step_0 = max(max_step_0, int(ckpt.split(".")[0])) for ckpt in ckpt_list_2: ckpt = ckpt.strip("/") if ckpt.endswith(".step"): max_step_1 = max(max_step_1, int(ckpt.split(".")[0])) snap_load_path = snapshot_path_0 if max_step_0 > max_step_1 else snapshot_path_1 snap_step = max(max_step_0, max_step_1) load_path = snap_load_path if snap_step > max_normal_step else load_normal_ckpt_path load_step = max(snap_step, max_normal_step) return load_path, load_step def query_latest_snapshot_step_local(self): max_step, max_step_path = 0, None for root, _, files in os.walk(self.save_ckpt_folder, followlinks=True): for fn in files: fn = fn.strip("/") if fn.endswith(".step"): # We assume that both normal ckpt and snapshot ckpt will store the '.step' file # as an integrity flag. step = int(fn.rsplit(".", maxsplit=1)[0]) if max_step < step: max_step = step max_step_path = root return max_step_path, max_step def query_lastest_ckpt(self): latest_checkpoint = None # Training was automatically restarted by the process, forcing the latest snapshot to be read. if self.save_ckpt_folder: if self.save_ckpt_folder.startswith("boto3"): latest_checkpoint, step = self.query_latest_snapshot_step_boto3() elif self.save_ckpt_folder.startswith("local"): latest_checkpoint, step = self.query_latest_snapshot_step_local() else: latest_checkpoint, step = None, 0 if latest_checkpoint is not None: if gpc.is_rank_for_log(): logger.info(f"Found latest ckpt : {latest_checkpoint}, step: {step}") send_alert_message( address=self.feishu_address, message=f"Auto restart resume from ckpt-path: '{latest_checkpoint}', step : {step}", ) else: if gpc.is_rank_for_log(): send_alert_message( address=self.feishu_address, message=f"Can't find snapshot checkpoint, use default load-ckpt path: {latest_checkpoint}", ) return latest_checkpoint def try_load_model(self, current_time=""): model_load_path = None if self.load_ckpt_folder and self.load_model_only_folder: raise ValueError( "Error, try to use both load_ckpt_folder and load_model_only_folder paths, \ if you only need to load model weights (for example starting an SFT task for the first time), \ set load_model_only_folder path, if you need to resume training from ckpt, \ set load_ckpt_folder or use default value \ (if is the default value, internlm will try to load the latest ckpt from save_ckpt_folder)" ) if self.load_ckpt_folder: if gpc.is_rank_for_log(): logger.info( f"===========Resume training from `{self.load_ckpt_folder}` {current_time} on host:" f"{socket.gethostname()}===========" ) model_load_path = self.load_ckpt_folder elif self.load_model_only_folder: if gpc.is_rank_for_log(): logger.info( f"===========Load Model from `{self.load_model_only_folder}` {current_time} on host:" f"{socket.gethostname()}===========" ) model_load_path = self.load_model_only_folder else: if gpc.is_rank_for_log(): logger.info( f"===========New Run {current_time} on host:{socket.gethostname()},rank={gpc.get_global_rank()}," f"tp={gpc.get_local_rank(ParallelMode.TENSOR)},pp={gpc.get_local_rank(ParallelMode.PIPELINE)}," f"dp={gpc.get_local_rank(ParallelMode.DATA)}===========" ) # Loading model weights must be done before zero is initialized. if model_load_path is not None: load_model_checkpoint(folder=model_load_path, model=self.model) def try_resume_training(self, lr_scheduler, optimizer, lr, train_state, train_dl): """Attempt to restore the training state of the last ckpt. Args: lr_scheduler (_LRScheduler): lr_scheduler object. optimizer (Optimizer): optimizer object. lr (float): learning rate. train_state (dict): traing states. train_dl (DataLoader): traning dataloader object """ if self.load_ckpt_folder is not None: # load optimzier states. if self.load_optimizer: load_optimizer_checkpoint(self.load_ckpt_folder, optimizer) # load lr scheduler states. load_scheduler(self.load_ckpt_folder, lr_scheduler, optimizer, lr, train_state) # load training states. load_context(self.load_ckpt_folder, train_dl, train_state) # load dataloader sampler states. if hasattr(train_state, "batch_sampler") and not isinstance( train_state.batch_sampler, torch.utils.data.sampler.BatchSampler ): load_sampler(self.load_ckpt_folder, train_dl.batch_sampler) if hasattr(train_state, "data_state_dict"): train_dl.dataset.load_state_dict( llm_load(os.path.join(self.load_ckpt_folder, "sampler_0.pt")), ckpt_path=self.load_ckpt_folder ) self.optimizer = optimizer self.lr_scheduler = lr_scheduler def save_checkpoint(self, folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None): """ Save checkpoint to the given folder path. """ start = time.time() self.set_save_folder(folder, train_state.step_count) torch.cuda.synchronize() torch.distributed.barrier() if gpc.is_rank_for_log(): logger.info(f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count}...") timer("save-model").start() save_model_checkpoint(folder=folder, model=model) timer("save-model").stop() timer("save-optimizer").start() save_optimizer_checkpoint(optim=optimizer, state_path=folder) timer("save-optimizer").stop() if ( hasattr(train_state, "data_state_dict") and gpc.get_local_rank(ParallelMode.TENSOR) == 0 and gpc.get_local_rank(ParallelMode.PIPELINE) == 0 ): llm_save( os.path.join(folder, f"sampler_{gpc.get_local_rank(ParallelMode.DATA)}.pt"), saved_obj=train_state.data_state_dict, ) if gpc.is_rank_for_log(): scheduler_states = scheduler.state_dict() llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states) if hasattr(train_state, "batch_sampler") and not isinstance( train_state.batch_sampler, torch.utils.data.sampler.BatchSampler ): sampler_state = train_state.batch_sampler.state_dict() llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state) llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict()) if model_config is not None: llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config) torch.distributed.barrier() if gpc.is_rank_for_log(): timer.log(["save-model", "save-optimizer"], logger=logger) logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s") if self.storage_manager.async_mode is False: llm_save( os.path.join(folder, f"{train_state.step_count}.step"), saved_obj=dict({"step": train_state.step_count}), ) def set_save_folder(self, folder, step): self.storage_manager.latest_save_folder = folder self.storage_manager.latest_save_step = step