""" This script refers to the dialogue example of streamlit, the interactive generation code of chatglm2 and transformers. We mainly modified part of the code logic to adapt to the generation of our model. Please refer to these links below for more information: 1. streamlit chat example: https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps 2. chatglm2: https://github.com/THUDM/ChatGLM2-6B 3. transformers: https://github.com/huggingface/transformers """ import streamlit as st import torch from dataclasses import dataclass, asdict from typing import List, Optional, Callable, Optional import copy import warnings import logging from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.utils import logging from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList from tools.transformers.interface import generate_interactive, GenerationConfig logger = logging.get_logger(__name__) def on_btn_click(): del st.session_state.messages @st.cache_resource def load_model(): model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda() tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True) return model, tokenizer def prepare_generation_config(): with st.sidebar: max_length = st.slider("Max Length", min_value=32, max_value=2048, value=2048) top_p = st.slider( 'Top P', 0.0, 1.0, 0.8, step=0.01 ) temperature = st.slider( 'Temperature', 0.0, 1.0, 0.7, step=0.01 ) st.button("Clear Chat History", on_click=on_btn_click) generation_config = GenerationConfig( max_length=max_length, top_p=top_p, temperature=temperature ) return generation_config user_prompt = "<|User|>:{user}\n" robot_prompt = "<|Bot|>:{robot}\n" cur_query_prompt = "<|User|>:{user}\n<|Bot|>:" def combine_history(prompt): messages = st.session_state.messages total_prompt = "" for message in messages: cur_content = message["content"] if message["role"] == "user": cur_prompt = user_prompt.replace("{user}", cur_content) elif message["role"] == "robot": cur_prompt = robot_prompt.replace("{robot}", cur_content) else: raise RuntimeError total_prompt += cur_prompt total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt) return total_prompt def main(): #torch.cuda.empty_cache() print("load model begin.") model, tokenizer = load_model() print("load model end.") user_avator = "doc/imgs/user.png" robot_avator = "doc/imgs/robot.png" st.title("InternLM-Chat-7B") generation_config = prepare_generation_config() # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"], avatar=message.get("avatar")): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container with st.chat_message("user", avatar=user_avator): st.markdown(prompt) real_prompt = combine_history(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator}) with st.chat_message("robot", avatar=robot_avator): message_placeholder = st.empty() for cur_response in generate_interactive(model=model, tokenizer=tokenizer, prompt=real_prompt, additional_eos_token_id=103028, **asdict(generation_config)): # Display robot response in chat message container message_placeholder.markdown(cur_response + "▌") message_placeholder.markdown(cur_response) # Add robot response to chat history st.session_state.messages.append({"role": "robot", "content": cur_response, "avatar": robot_avator}) torch.cuda.empty_cache() if __name__ == "__main__": main()