diff --git a/README-zh-Hans.md b/README-zh-Hans.md index 2c1b951..ad19550 100644 --- a/README-zh-Hans.md +++ b/README-zh-Hans.md @@ -119,21 +119,22 @@ streamlit run web_demo.py 1. 首先安装 LMDeploy: - ``` - python3 -m pip install lmdeploy - ``` + ```bash + python3 -m pip install lmdeploy + ``` 2. 快速的部署命令如下: - ``` - python3 -m lmdeploy.serve.turbomind.deploy InternLM-7B /path/to/internlm-7b/model hf - ``` + ```bash + python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-7b/model + ``` -3. 在导出模型后,你可以直接通过如下命令启动服务一个服务并和部署后的模型对话 +3. 在导出模型后,你可以直接通过如下命令启动服务,并在客户端与AI对话 - ``` - python3 -m lmdeploy.serve.client {server_ip_addresss}:33337 - ``` + ```bash + bash workspace/service_docker_up.sh + python3 -m lmdeploy.serve.client {server_ip_addresss}:33337 + ``` [LMDeploy](https://github.com/InternLM/LMDeploy) 支持了 InternLM 部署的完整流程,请参考 [部署教程](https://github.com/InternLM/LMDeploy) 了解 InternLM 的更多部署细节。 diff --git a/README.md b/README.md index b7e37c1..090e762 100644 --- a/README.md +++ b/README.md @@ -125,21 +125,22 @@ We use [LMDeploy](https://github.com/InternLM/LMDeploy) to complete the one-clic 1. First, install LMDeploy: -``` - python3 -m pip install lmdeploy -``` + ```bash + python3 -m pip install lmdeploy + ``` 2. Use the following command for quick deployment: -``` - python3 -m lmdeploy.serve.turbomind.deploy InternLM-7B /path/to/internlm-7b/model hf -``` + ```bash + python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b/model + ``` 3. After exporting the model, you can start a server and have a conversation with the deployed model using the following command: - -``` - python3 -m lmdeploy.serve.client {server_ip_addresss}:33337 -``` + + ```bash + bash workspace/service_docker_up.sh + python3 -m lmdeploy.serve.client {server_ip_addresss}:33337 + ``` [LMDeploy](https://github.com/InternLM/LMDeploy) provides a complete workflow for deploying InternLM. Please refer to the [deployment tutorial](https://github.com/InternLM/LMDeploy) for more details on deploying InternLM.