feat(model): implement uniform_init for tensor. (#252)

* Implement uniform_init for tensor.

* Fix functinal calling bugs: normal->uniform.

* Format editting: remove unused torch importing.
pull/260/head
Pryest 2023-09-01 01:12:53 +08:00 committed by GitHub
parent c92aa06bd8
commit f79586b0c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 32 additions and 3 deletions

View File

@ -3,16 +3,15 @@
import math
import torch
from torch import Tensor, nn
def scaled_init_method_normal(sigma, num_layers):
def scaled_init_method_normal(sigma: float = 1.0, num_layers: int = 1):
"""Init method based on N(0, sigma/sqrt(2*num_layers)."""
std = sigma / math.sqrt(2.0 * num_layers)
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=std)
return nn.init.normal_(tensor, mean=0.0, std=std)
return init_
@ -32,3 +31,33 @@ def normal_(mean: float = 0.0, std: float = 1.0):
return nn.init.normal_(tensor, mean, std)
return initializer
def scaled_init_method_uniform(sigma: float = 1.0, num_layers: int = 1):
"""Init method based on p(x)=Uniform(-a, a) where std(x)=sigma/sqrt(2*num_layers)."""
std = sigma / math.sqrt(2.0 * num_layers)
a = math.sqrt(3.0 * std)
def init_(tensor):
return nn.init.uniform_(tensor, -a, a)
return init_
def uniform_(mean: float = 0.0, std: float = 1.0):
r"""Return the initializer filling the input Tensor with values drawn from the uniform distribution
.. math::
\mathcal{U}(mean-a, mean+a), where a satisfies \mathcal{U}_{std}=std.
Args:
mean (float): the mean of the uniform distribution. Defaults 0.0.
std (float): the standard deviation of the uniform distribution. Defaults 1.0.
"""
a = math.sqrt(3.0 * std)
def initializer(tensor: Tensor):
return nn.init.uniform_(tensor, mean - a, mean + a)
return initializer