refactor code

pull/319/head
Qu Wenwen 2023-09-19 10:57:20 +08:00
parent 98329da327
commit f76fd41325
4 changed files with 62 additions and 58 deletions

View File

@ -164,7 +164,7 @@ class NaiveAMPModel(nn.Module):
assert isinstance(outputs, (Tensor, tuple))
if isinstance(outputs, tuple):
for output_data_ in outputs:
if isinstance(output_data_, Tensor) and output_data_.dtype is not self.dtype:
if isinstance(output_data_, Tensor):
outputs_.append(output_data_.to(self.dtype))
else:
outputs_.append(output_data_)

View File

@ -31,7 +31,8 @@ from internlm.solver.beta2_scheduler import Beta2Scheduler
from internlm.solver.lr_scheduler import FineTuneCosineAnnealingWarmupLR
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.solver.optimizer.utils import ParamBcastSyncHandler
from internlm.utils.common import DummyProfile, create_param_groups
from internlm.train.utils import create_param_groups
from internlm.utils.common import DummyProfile
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.parallel import (

58
internlm/train/utils.py Normal file
View File

@ -0,0 +1,58 @@
from typing import Dict, Tuple
import torch
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
"""Split parameters into different groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]):
The list of parameter groups to split
Returns:
Tuple[Dict]:
list of fp16/fp32 groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
# Create fp32 and moe groups and copy origin attribute
for group_param in param_groups:
fp32_group = {}
# copy attribute for fp32 group
for ori_key in group_param.keys():
if ori_key == "name":
fp32_group["name"] = ori_key + "_fp32"
else:
if ori_key == "params":
fp32_group[ori_key] = []
else:
fp32_group[ori_key] = group_param[ori_key]
# Assign param
new_params = []
for param in group_param["params"]:
if param.dtype == torch.float32:
fp32_group["params"].append(param)
else:
new_params.append(param)
# origin group without fp32
group_param["params"] = new_params
# append to origin group
param_groups.append(fp32_group)
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)

View File

@ -7,7 +7,7 @@ import os
import random
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Tuple, Union
from typing import Union
import numpy as np
import torch
@ -236,58 +236,3 @@ class DummyProfile:
def step(self):
pass
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
"""Split parameters into different MoE groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]):
The list of parameter groups to split
Returns:
Tuple[Dict]:
list of MoE/non-MoE groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
fp32_group = {}
# Create fp32 and moe groups and copy origin attribute
for param_group in param_groups:
# copy attribute for fp32 group
fp32_group["name"] = "fp32"
fp32_group["gate"] = True
for ori_key in param_group.keys():
if ori_key != "name":
if ori_key == "params":
fp32_group[ori_key] = []
else:
fp32_group[ori_key] = param_group[ori_key]
# Assign param
for param_group in param_groups:
new_params = []
for param in param_group["params"]:
if param.dtype == torch.float32:
fp32_group["params"].append(param)
else:
new_params.append(param)
# origin group without fp32 or moe parameter
param_group["params"] = new_params
# append to origin group
param_groups.append(fp32_group)
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)