mirror of https://github.com/InternLM/InternLM
[Fix]: Update web demo to be self-contained (#624)
parent
519c7934c4
commit
f08a18b9b7
149
chat/web_demo.py
149
chat/web_demo.py
|
@ -7,17 +7,148 @@ Please refer to these links below for more information:
|
||||||
3. transformers: https://github.com/huggingface/transformers
|
3. transformers: https://github.com/huggingface/transformers
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from dataclasses import asdict
|
import copy
|
||||||
|
import warnings
|
||||||
|
from dataclasses import asdict, dataclass
|
||||||
|
from typing import Callable, List, Optional
|
||||||
|
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
import torch
|
import torch
|
||||||
from tools.transformers.interface import GenerationConfig, generate_interactive
|
from torch import nn
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class GenerationConfig:
|
||||||
|
# this config is used for chat to provide more diversity
|
||||||
|
max_length: int = 32768
|
||||||
|
top_p: float = 0.8
|
||||||
|
temperature: float = 0.8
|
||||||
|
do_sample: bool = True
|
||||||
|
repetition_penalty: float = 1.005
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def generate_interactive(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
prompt,
|
||||||
|
generation_config: Optional[GenerationConfig] = None,
|
||||||
|
logits_processor: Optional[LogitsProcessorList] = None,
|
||||||
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||||
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||||||
|
additional_eos_token_id: Optional[int] = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
|
||||||
|
input_length = len(inputs["input_ids"][0])
|
||||||
|
for k, v in inputs.items():
|
||||||
|
inputs[k] = v.cuda()
|
||||||
|
input_ids = inputs["input_ids"]
|
||||||
|
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] # noqa: F841 # pylint: disable=W0612
|
||||||
|
if generation_config is None:
|
||||||
|
generation_config = model.generation_config
|
||||||
|
generation_config = copy.deepcopy(generation_config)
|
||||||
|
model_kwargs = generation_config.update(**kwargs)
|
||||||
|
bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
|
||||||
|
generation_config.bos_token_id,
|
||||||
|
generation_config.eos_token_id,
|
||||||
|
)
|
||||||
|
if isinstance(eos_token_id, int):
|
||||||
|
eos_token_id = [eos_token_id]
|
||||||
|
if additional_eos_token_id is not None:
|
||||||
|
eos_token_id.append(additional_eos_token_id)
|
||||||
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||||||
|
if has_default_max_length and generation_config.max_new_tokens is None:
|
||||||
|
warnings.warn(
|
||||||
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
||||||
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
||||||
|
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
||||||
|
UserWarning,
|
||||||
|
)
|
||||||
|
elif generation_config.max_new_tokens is not None:
|
||||||
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
||||||
|
if not has_default_max_length:
|
||||||
|
logger.warn( # pylint: disable=W4902
|
||||||
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||||||
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||||||
|
"Please refer to the documentation for more information. "
|
||||||
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
||||||
|
UserWarning,
|
||||||
|
)
|
||||||
|
|
||||||
|
if input_ids_seq_length >= generation_config.max_length:
|
||||||
|
input_ids_string = "input_ids"
|
||||||
|
logger.warning(
|
||||||
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
||||||
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
||||||
|
" increasing `max_new_tokens`."
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. Set generation parameters if not already defined
|
||||||
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
||||||
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
||||||
|
|
||||||
|
logits_processor = model._get_logits_processor(
|
||||||
|
generation_config=generation_config,
|
||||||
|
input_ids_seq_length=input_ids_seq_length,
|
||||||
|
encoder_input_ids=input_ids,
|
||||||
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||||||
|
logits_processor=logits_processor,
|
||||||
|
)
|
||||||
|
|
||||||
|
stopping_criteria = model._get_stopping_criteria(
|
||||||
|
generation_config=generation_config, stopping_criteria=stopping_criteria
|
||||||
|
)
|
||||||
|
logits_warper = model._get_logits_warper(generation_config)
|
||||||
|
|
||||||
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
||||||
|
scores = None
|
||||||
|
while True:
|
||||||
|
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||||||
|
# forward pass to get next token
|
||||||
|
outputs = model(
|
||||||
|
**model_inputs,
|
||||||
|
return_dict=True,
|
||||||
|
output_attentions=False,
|
||||||
|
output_hidden_states=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
next_token_logits = outputs.logits[:, -1, :]
|
||||||
|
|
||||||
|
# pre-process distribution
|
||||||
|
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||||||
|
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||||||
|
|
||||||
|
# sample
|
||||||
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||||
|
if generation_config.do_sample:
|
||||||
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||||
|
else:
|
||||||
|
next_tokens = torch.argmax(probs, dim=-1)
|
||||||
|
|
||||||
|
# update generated ids, model inputs, and length for next step
|
||||||
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||||||
|
model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
|
||||||
|
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
||||||
|
|
||||||
|
output_token_ids = input_ids[0].cpu().tolist()
|
||||||
|
output_token_ids = output_token_ids[input_length:]
|
||||||
|
for each_eos_token_id in eos_token_id:
|
||||||
|
if output_token_ids[-1] == each_eos_token_id:
|
||||||
|
output_token_ids = output_token_ids[:-1]
|
||||||
|
response = tokenizer.decode(output_token_ids)
|
||||||
|
|
||||||
|
yield response
|
||||||
|
# stop when each sentence is finished, or if we exceed the maximum length
|
||||||
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
def on_btn_click():
|
def on_btn_click():
|
||||||
del st.session_state.messages
|
del st.session_state.messages
|
||||||
|
|
||||||
|
@ -35,7 +166,7 @@ def load_model():
|
||||||
|
|
||||||
def prepare_generation_config():
|
def prepare_generation_config():
|
||||||
with st.sidebar:
|
with st.sidebar:
|
||||||
max_length = st.slider("Max Length", min_value=32, max_value=2048, value=2048)
|
max_length = st.slider("Max Length", min_value=8, max_value=32768, value=32768)
|
||||||
top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
|
top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
|
||||||
temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01)
|
temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01)
|
||||||
st.button("Clear Chat History", on_click=on_btn_click)
|
st.button("Clear Chat History", on_click=on_btn_click)
|
||||||
|
@ -52,17 +183,21 @@ cur_query_prompt = "[UNUSED_TOKEN_146]user\n{user}[UNUSED_TOKEN_145]\n[UNUSED_TO
|
||||||
|
|
||||||
def combine_history(prompt):
|
def combine_history(prompt):
|
||||||
messages = st.session_state.messages
|
messages = st.session_state.messages
|
||||||
total_prompt = ""
|
meta_instruction = (
|
||||||
|
"You are InternLM (书生·浦语), a helpful, honest, and harmless AI assistant developed by Shanghai "
|
||||||
|
"AI Laboratory (上海人工智能实验室)."
|
||||||
|
)
|
||||||
|
total_prompt = f"<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"
|
||||||
for message in messages:
|
for message in messages:
|
||||||
cur_content = message["content"]
|
cur_content = message["content"]
|
||||||
if message["role"] == "user":
|
if message["role"] == "user":
|
||||||
cur_prompt = user_prompt.replace("{user}", cur_content)
|
cur_prompt = user_prompt.format(user=cur_content)
|
||||||
elif message["role"] == "robot":
|
elif message["role"] == "robot":
|
||||||
cur_prompt = robot_prompt.replace("{robot}", cur_content)
|
cur_prompt = robot_prompt.format(robot=cur_content)
|
||||||
else:
|
else:
|
||||||
raise RuntimeError
|
raise RuntimeError
|
||||||
total_prompt += cur_prompt
|
total_prompt += cur_prompt
|
||||||
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
|
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
|
||||||
return total_prompt
|
return total_prompt
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue