add 200k-long-context inference section in README (#705)

pull/727/head
Lyu Han 2024-02-23 14:08:59 +08:00 committed by GitHub
parent 67c5e9dba7
commit e7ba85e707
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 29 additions and 0 deletions

View File

@ -218,6 +218,20 @@ print(response)
Please refer to the [guidance](./chat/lmdeploy.md) for more usages about model deployment. For additional deployment tutorials, feel free to explore [here](https://github.com/InternLM/LMDeploy).
### 200K-long-context Inference
By enabling the Dynamic NTK feature of LMDeploy, you can acquire the long-context inference power.
```python
from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
backend_config = TurbomindEngineConfig(rope_scaling_factor=2.0, session_len=200000)
pipe = pipeline('internlm/internlm2-chat-7b', backend_config=backend_config)
prompt = 'Use a long prompt to replace this sentence'
response = pipe(prompt)
print(response)
```
## Agent
InternLM2-Chat models have excellent tool utilization capabilities and can work with function calls in a zero-shot manner. See more examples in [agent session](./agent/).

View File

@ -214,6 +214,21 @@ print(response)
请参考[部署指南](./chat/lmdeploy.md)了解更多使用案例,更多部署教程则可在[这里](https://github.com/InternLM/LMDeploy)找到。
### 20万字超长上下文推理
激活 LMDeploy 的 Dynamic NTK 能力,可以轻松把 internlm2-chat-7b 外推到 200K 上下文
```python
from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
backend_config = TurbomindEngineConfig(rope_scaling_factor=2.0, session_len=160000)
pipe = pipeline('internlm/internlm2-chat-7b', backend_config=backend_config)
prompt = 'Use a long prompt to replace this sentence'
response = pipe(prompt)
print(response)
```
## 微调&训练
请参考[微调教程](./finetune/)尝试续训或微调 InternLM2。