diff --git a/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po b/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po index 2520d1c..adb3e27 100644 --- a/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po +++ b/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po @@ -8,7 +8,7 @@ msgid "" msgstr "" "Project-Id-Version: InternLM \n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-09-26 17:04+0800\n" +"POT-Creation-Date: 2023-09-27 10:59+0800\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language: en\n" @@ -83,3 +83,35 @@ msgstr "" #: ../../source/mixed_precision.rst:16 msgid "例如:" msgstr "For example:" + +#: ../../source/mixed_precision.rst:40 +msgid "TF32训练" +msgstr "" + +#: ../../source/mixed_precision.rst:41 +msgid "TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图:" +msgstr "TensorFloat-32 (TF32) is a computational format introduced by Nvidia on Ampere Architecture GPUs for TensorCore. A comparison with other data formats is shown below." + +#: ../../source/mixed_precision.rst:47 +msgid "使用TF32的前置条件:" +msgstr "Prerequisites for using TF32." + +#: ../../source/mixed_precision.rst:49 +msgid "输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。" +msgstr "The input data type should be FP32 and TF32 is designed for matrix multiplication, convolutions, and other relative computations." + +#: ../../source/mixed_precision.rst:51 +msgid "Ampere架构的GPU。" +msgstr "Ampere Architecture GPU" + +#: ../../source/mixed_precision.rst:53 +msgid "InternLM支持使用TF32训练模型,允许用户在config文件中将 ``dtype`` 设置为 ``torch.tf32``。" +msgstr "InternLM supports training model in TF32 and allows user to set the ``dtype`` in config as ``torch.tf32``." + +#: ../../source/mixed_precision.rst:75 +msgid "" +"值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,在InternLM中,尽管用户将 " +"``dtype`` 设置成了 ``torch.tf32``,模型的数据类型依旧是 ``torch.float32``。InternLM会针对 " +"``dtype`` 为 ``torch.tf32`` 的情况,设置以下变量来开启TF32训练。" +msgstr "It is noticed that TF32 is an intermediate format in TensorCore instead of a data type. Therefore, InternLM could set the following environment variables to enable TF32 when the ``dtype`` is ``torch.tf32``, which is actually ``torch.float32``." + diff --git a/doc/code-docs/locales/en/LC_MESSAGES/usage.po b/doc/code-docs/locales/en/LC_MESSAGES/usage.po index 37e7cba..5672f15 100644 --- a/doc/code-docs/locales/en/LC_MESSAGES/usage.po +++ b/doc/code-docs/locales/en/LC_MESSAGES/usage.po @@ -8,7 +8,7 @@ msgid "" msgstr "" "Project-Id-Version: InternLM \n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-09-11 14:25+0800\n" +"POT-Creation-Date: 2023-09-27 10:59+0800\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language: en\n" @@ -360,6 +360,28 @@ msgstr "" "Taking the configuration of the demo training on a single machine with 8 " "GPUs on slurm as an example, the training result log is shown below:" +#: ../../../usage.md:373 +msgid "长文本生成" +msgstr "" + +#: ../../../usage.md:375 +msgid "" +"在推理阶段,您可以在模型配置中通过设置 `use_dynamic_ntk_rope=True` 开启 RoPE 的 Dynamic NTK " +"选项,从而使得模型适应长文本输入输出,达到 16K 的外推效果:" +msgstr "" + +#: ../../../usage.md:401 +msgid "关于 Dyanmic NTK 的原理,详细请参考" +msgstr "" + +#: ../../../usage.md:403 +msgid "https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases" +msgstr "" + +#: ../../../usage.md:404 +msgid "https://kexue.fm/archives/9675" +msgstr "" + #~ msgid "`load_model_only_folder`与`load_ckpt_folder`不能同时设置" #~ msgstr "" #~ "`load_model_only_folder` and `load_ckpt_folder` " diff --git a/doc/code-docs/source/mixed_precision.rst b/doc/code-docs/source/mixed_precision.rst index 59955e0..fdf1d22 100644 --- a/doc/code-docs/source/mixed_precision.rst +++ b/doc/code-docs/source/mixed_precision.rst @@ -34,3 +34,48 @@ InternLM默认将模型转换为16位浮点数类型进行训练(在配置文 dtype=torch.bfloat16(), sync_buffer=False, ) + + +TF32训练 +----------------- +TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图: + +.. figure:: ../../imgs/tf32.png + :scale: 50% + :class: with-border + +使用TF32的前置条件: + +1. 输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。 + +2. Ampere架构的GPU。 + +InternLM支持使用TF32训练模型,允许用户在config文件中将 ``dtype`` 设置为 ``torch.tf32``。 + +.. code-block:: python + + model = dict( + checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1] + num_attention_heads=NUM_ATTENTION_HEAD, + embed_split_hidden=True, + vocab_size=VOCAB_SIZE, + embed_grad_scale=1, + parallel_output=True, + hidden_size=HIDDEN_SIZE, + num_layers=NUM_LAYER, + mlp_ratio=MLP_RATIO, + apply_post_layer_norm=False, + dtype="torch.tf32", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32" + norm_type="rmsnorm", + layer_norm_epsilon=1e-5, + use_flash_attn=True, + num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used. + ) + +值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,在InternLM中,尽管用户将 ``dtype`` 设置成了 ``torch.tf32``,模型的数据类型依旧是 ``torch.float32``。InternLM会针对 ``dtype`` 为 ``torch.tf32`` 的情况,设置以下变量来开启TF32训练。 + +.. code-block:: python + + torch.backends.cudnn.allow_tf32 = True + torch.backends.cuda.matmul.allow_tf32 = True + diff --git a/doc/code-docs/source/tf32.rst b/doc/code-docs/source/tf32.rst deleted file mode 100644 index 29f9fb8..0000000 --- a/doc/code-docs/source/tf32.rst +++ /dev/null @@ -1,52 +0,0 @@ -TF32训练 -================== - -InternLM支持使用TF32训练模型。TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图: - -InternLM supports training models using TF32. TensorFloat-32 (TF32) is a computational format introduced by Nvidia for TensorCores on Ampere architecture GPUs. Here's a comparison of TF32 with other data formats: - -.. figure:: ../../imgs/tf32.png - :scale: 50% - :class: with-border - -使用TF32的前置条件: - -Prerequisites for using TF32: - input data must be of type FP32 (single-precision floating-point) and the computations should be matrix multiplication, convolution and so on. -1. 输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。 - -Ampere GPU -2. Ampere架构的GPU。 - - -值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,为了区分不同的精度与计算格式( ``BF16`` 、``FP16`` 、``FP32`` 、``TF32`` ),InternLM支持用户在 ``model config`` 中传入 ``torch.tf32`` 来表示想要使用TF32加速运算,本质上数据类型依旧为 ``FP32``。 - -It is noticed that TF32 is an intermediate calculation format when employing TensorCores. InternLM allows users to speficy ``torch.tf32`` in the model config to using TF32 acceleration while dtype is still ``torch.float32``. - -.. code-block:: python - - model = dict( - checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1] - num_attention_heads=NUM_ATTENTION_HEAD, - embed_split_hidden=True, - vocab_size=VOCAB_SIZE, - embed_grad_scale=1, - parallel_output=True, - hidden_size=HIDDEN_SIZE, - num_layers=NUM_LAYER, - mlp_ratio=MLP_RATIO, - apply_post_layer_norm=False, - dtype="torch.tf32", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32" - norm_type="rmsnorm", - layer_norm_epsilon=1e-5, - use_flash_attn=True, - num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used. - ) - -InternLM会根据 ``model config`` 中的 ``dtype`` 字符串来判断真正的数据类型。InternLM通过设置以下变量来开启TF32训练。 -InternLM enables TF32 training by setting the following variables. - -.. code-block:: python - - torch.backends.cudnn.allow_tf32 = True - torch.backends.cuda.matmul.allow_tf32 = True