diff --git a/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po b/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po index 6707b89..d021814 100644 --- a/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po +++ b/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po @@ -7,7 +7,7 @@ msgid "" msgstr "" "Project-Id-Version: InternLM \n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-09-26 17:04+0800\n" +"POT-Creation-Date: 2023-09-27 10:59+0800\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language: en\n" @@ -82,3 +82,35 @@ msgstr "" #: ../../source/mixed_precision.rst:16 msgid "例如:" msgstr "For example:" + +#: ../../source/mixed_precision.rst:40 +msgid "TF32训练" +msgstr "TF32 Training" + +#: ../../source/mixed_precision.rst:41 +msgid "TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图:" +msgstr "TensorFloat-32 (TF32) is a computational format introduced by Nvidia on Ampere Architecture GPUs for TensorCore. A comparison with other data formats is shown below." + +#: ../../source/mixed_precision.rst:47 +msgid "使用TF32的前置条件:" +msgstr "Prerequisites for using TF32." + +#: ../../source/mixed_precision.rst:49 +msgid "输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。" +msgstr "The input data type should be FP32 and TF32 is designed for matrix multiplication, convolutions, and other relative computations." + +#: ../../source/mixed_precision.rst:51 +msgid "Ampere架构的GPU。" +msgstr "Ampere Architecture GPU" + +#: ../../source/mixed_precision.rst:53 +msgid "InternLM支持使用TF32训练模型,允许用户在config文件中将 ``dtype`` 设置为 ``torch.tf32``。" +msgstr "InternLM supports training model in TF32 and allows user to set the ``dtype`` in config as ``torch.tf32``." + +#: ../../source/mixed_precision.rst:75 +msgid "" +"值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,在InternLM中,尽管用户将 " +"``dtype`` 设置成了 ``torch.tf32``,模型的数据类型依旧是 ``torch.float32``。InternLM会针对 " +"``dtype`` 为 ``torch.tf32`` 的情况,设置以下变量来开启TF32训练。" +msgstr "It is noticed that TF32 is an intermediate format in TensorCore instead of a data type. Therefore, InternLM could set the following environment variables to enable TF32 when the ``dtype`` is ``torch.tf32``, which is actually ``torch.float32``." + diff --git a/doc/code-docs/source/mixed_precision.rst b/doc/code-docs/source/mixed_precision.rst index 59955e0..fdf1d22 100644 --- a/doc/code-docs/source/mixed_precision.rst +++ b/doc/code-docs/source/mixed_precision.rst @@ -34,3 +34,48 @@ InternLM默认将模型转换为16位浮点数类型进行训练(在配置文 dtype=torch.bfloat16(), sync_buffer=False, ) + + +TF32训练 +----------------- +TensorFloat-32(TF32)是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图: + +.. figure:: ../../imgs/tf32.png + :scale: 50% + :class: with-border + +使用TF32的前置条件: + +1. 输入数据类型为FP32,且计算为矩阵乘法及卷积相关运算,才可以使用TF32作为TensorCore的中间计算类型。 + +2. Ampere架构的GPU。 + +InternLM支持使用TF32训练模型,允许用户在config文件中将 ``dtype`` 设置为 ``torch.tf32``。 + +.. code-block:: python + + model = dict( + checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1] + num_attention_heads=NUM_ATTENTION_HEAD, + embed_split_hidden=True, + vocab_size=VOCAB_SIZE, + embed_grad_scale=1, + parallel_output=True, + hidden_size=HIDDEN_SIZE, + num_layers=NUM_LAYER, + mlp_ratio=MLP_RATIO, + apply_post_layer_norm=False, + dtype="torch.tf32", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32" + norm_type="rmsnorm", + layer_norm_epsilon=1e-5, + use_flash_attn=True, + num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used. + ) + +值得注意的是,TF32仅仅是在使用TensorCore时的一种中间计算格式,并不是一个完全的数据类型。因此,在InternLM中,尽管用户将 ``dtype`` 设置成了 ``torch.tf32``,模型的数据类型依旧是 ``torch.float32``。InternLM会针对 ``dtype`` 为 ``torch.tf32`` 的情况,设置以下变量来开启TF32训练。 + +.. code-block:: python + + torch.backends.cudnn.allow_tf32 = True + torch.backends.cuda.matmul.allow_tf32 = True + diff --git a/doc/imgs/tf32.png b/doc/imgs/tf32.png new file mode 100644 index 0000000..b7f8393 Binary files /dev/null and b/doc/imgs/tf32.png differ