set default expert parallel size

pull/375/head
Wenwen Qu 2023-09-27 17:51:58 +08:00
parent f5caa1c048
commit e2b7a7fa89
4 changed files with 21 additions and 34 deletions

View File

@ -467,6 +467,14 @@ class ParallelContext(metaclass=SingletonMeta):
if self.zero1_parallel_size <= 0:
self.zero1_parallel_size = self.data_parallel_size
# if not set expert_parallel_size in parallel config
if self.expert_parallel_size <= 0:
# by default, expert_parallel_size equals to data_parallel_size, but if the number of experts is smaller
# than data_parallel_size, set expert_parallel_size to be the number of experts to make sure each device
# has one expert.
self.expert_parallel_size = min(self.data_parallel_size, self.config.model.get("num_experts", 1))
logger.warning(f"not set expert parallel size, set it as {self.expert_parallel_size}")
self.check_sanity()
initializer_args = [

View File

@ -74,7 +74,7 @@ def args_sanity_check():
gpc.config.parallel._add_item("tensor", 1)
if "expert" not in gpc.config.parallel:
gpc.config.parallel._add_item("expert", 1)
gpc.config.parallel._add_item("expert", -1)
# processing the data config in gpc
data = gpc.config.data

View File

@ -37,7 +37,7 @@ from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.parallel import (
is_no_pp_or_last_stage,
sync_model_param_with_ep,
sync_model_param,
sync_model_param_within_tp,
)
from internlm.utils.registry import MODEL_INITIALIZER
@ -80,7 +80,7 @@ def initialize_model():
# This sync is very important, cause the model weights kept in optimizer are copied
# from the origin parameters in the memory, so we should make sure the dp sync
# does not influence the model weights in optimizer be different with the origin parameters.
sync_model_param_with_ep(model)
sync_model_param(model)
# This function is needed to make sure parameters that are not splitted by tensor parallelism are
# the same across tensor parallelism.

View File

@ -12,45 +12,24 @@ def is_model_parallel_parameter(p):
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
def sync_model_param(model, parallel_mode):
r"""Make sure data parameters are consistent during Data Parallel Mode.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
"""
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
for param in model.parameters():
if is_moe_param(param):
# TODO: moe expert param need to sync in expert data parallel group
# now we do not support expert data parallel
pass
else:
ranks = gpc.get_ranks_in_group(parallel_mode)
dist.broadcast(param, src=ranks[0], group=gpc.get_group(parallel_mode))
def sync_tensor(tensor, parallel_mode):
r"""Make sure data tensor(parameters) are consistent during Data and Expert Parallel Mode.
Args:
tensor (:class:`torch.Tensor`): A parameters you check the consistency.
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
"""
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
ranks = gpc.get_ranks_in_group(parallel_mode)
dist.broadcast(tensor, src=ranks[0], group=gpc.get_group(parallel_mode))
# TODO: will be used in expert data parallel, may can also used in sync_model_param_within_tp
def sync_model_param_with_ep(model):
def sync_model_param(model):
r"""Make sure data parameters are consistent during Data Parallel Mode.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
"""
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
sync_moe_param = (
gpc.is_initialized(ParallelMode.EXPERT_DATA) and gpc.get_world_size(ParallelMode.EXPERT_DATA) > 1
)
for param in model.parameters():
if is_moe_param(param):
if sync_moe_param and is_moe_param(param):
sync_tensor(param, ParallelMode.EXPERT_DATA)
else:
sync_tensor(param, ParallelMode.DATA)