diff --git a/README_npu.md b/README_npu.md
index 9a1ea22..61a0b25 100644
--- a/README_npu.md
+++ b/README_npu.md
@@ -37,15 +37,16 @@
This is a guide to using Ascend NPU to train and infer the InternLM series models.
## News
-\[2025.01.15\] InternLM3-8B-Instruct can be used in Xtuner, LLaMa-Factory and transformers.
+\[2025.01.15\] InternLM3-8B-Instruct can be used in Xtuner, LLaMA-Factory and transformers.
## Model Zoo
### InternLM3
-| Model | Transformers(HF) | ModelScope(HF) | Modelers(HF) | Release Date |
-| ------------------------- | -------------------------------------------------------- | ------------------------------------------------------ | ----------------------------------------------------- | ------------ |
-| **InternLM3-8B-Instruct** | [🤗internlm3_8B_instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [
internlm3_8b_instruct](https://www.modelscope.cn/models/Shanghai_AI_Laboratory/internlm3-8b-instruct/summary) | [](https://modelers.cn/models/Intern/internlm3-8b-instruct) | 2025-01-15 |
+| Model | Transformers | ModelScope | Modelers | Release Date |
+| ------------------------- | ---------------------------------------------------- | -------------------------------------------------- | ------------------------------------------------- | ------------ |
+| **InternLM3-8B-Instruct** | [🤗internlm3_8B_instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [
internlm3_8b_instruct](https://www.modelscope.cn/models/Shanghai_AI_Laboratory/internlm3-8b-instruct/summary) | [](https://modelers.cn/models/Intern/internlm3-8b-instruct) | 2025-01-15 |
+
## Environment Setup
### Installing Ascend CANN Toolkit and Kernels
@@ -79,7 +80,6 @@ Modify `requirements/runtime.txt` with the following changes:
```text
bitsandbytes==0.42.0
-mmengine==0.10.5
torchvision==0.19.0
numpy==1.26.4
```
@@ -127,24 +127,6 @@ model = dict(
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type='nf4')),
- lora=dict(
- type=LoraConfig,
- r=64,
- lora_alpha=16,
- lora_dropout=0.1,
- bias='none',
- task_type='CAUSAL_LM'))
-
-custom_hooks = [
- dict(type=DatasetInfoHook, tokenizer=tokenizer),
- # dict(
- # type=EvaluateChatHook,
- # tokenizer=tokenizer,
- # every_n_iters=evaluation_freq,
- # evaluation_inputs=evaluation_inputs,
- # system=SYSTEM,
- # prompt_template=prompt_template)
-]
randomness = dict(seed=123, deterministic=True)
```
@@ -158,7 +140,7 @@ NPROC_PER_NODE=8 xtuner train internlm3_8b_instruct_lora_oasst1_e10.py --deepspe
The fine-tuning results are saved in the directory `./work_dirs/internlm3_8b_instruct_lora_oasst1_e10/iter_xxx.pth`.
The comparison of loss between NPU and GPU is as follows:
-
+
### Model Convert
@@ -189,9 +171,9 @@ cp path_to_your_model/modeling_internlm3.py ./work_dirs/merge_output
xtuner chat ./work_dirs/merge_output --prompt-template internlm2_chat
```
-## LLama-Factory
+## LLaMA-Factory
-### Installing LLaMa-Factory
+### Installing LLaMA-Factory
```shell
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
@@ -201,7 +183,7 @@ pip install -e ".[torch-npu,metrics]"
### Inference
-Create the `examples/inference/internlm3_8b_instruct.yaml` inference configuration file in the LLaMa-Factory directory:
+Create the `examples/inference/internlm3_8b_instruct.yaml` inference configuration file in the LLaMA-Factory directory:
```yaml
model_name_or_path: xxx # Support only local loading. Set this parameter to the local weight path of InternLM3-8B-Instruct.
@@ -217,7 +199,7 @@ llamafactory-cli chat examples/inference/internlm3_8b_instruct.yaml
### Fine-tuning
-Create the `examples/train_full/internlm3_8b_instruct_full_sft.yaml` configuration file in the LLaMa-Factory directory. The fine-tuning configuration file is as follows:
+Create the `examples/train_full/internlm3_8b_instruct_full_sft.yaml` configuration file in the LLaMA-Factory directory. The fine-tuning configuration file is as follows:
```yaml
### model
@@ -276,7 +258,7 @@ The loss curve obtained after finetuning is as follows:
The loss curve compared with GPU is as follows:
-
+
## Transformers
diff --git a/README_npu_zh-CN.md b/README_npu_zh-CN.md
index ac15902..35954d3 100644
--- a/README_npu_zh-CN.md
+++ b/README_npu_zh-CN.md
@@ -37,15 +37,15 @@
这是一份使用 Ascend NPU 对 InternLM 系列模型进行训练和推理的指南。
## News
-\[2025.01.15\] InternLM3-8B-Instruct 可用于 Xtuner、LLaMa-Factory 和 transformers 中。
+\[2025.01.15\] InternLM3-8B-Instruct 可用于 Xtuner、LLaMA-Factory 和 transformers 中。
## Model Zoo
### InternLM3
-| Model | Transformers(HF) | ModelScope(HF) | Modelers(HF) | Release Date |
-| ------------------------- | -------------------------------------------------------- | ------------------------------------------------------ | ----------------------------------------------------- | ------------ |
-| **InternLM3-8B-Instruct** | [🤗internlm3_8B_instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [
internlm3_8b_instruct](https://www.modelscope.cn/models/Shanghai_AI_Laboratory/internlm3-8b-instruct/summary) | [](https://modelers.cn/models/Intern/internlm3-8b-instruct) | 2025-01-15 |
+| Model | Transformers | ModelScope | Modelers | Release Date |
+| ------------------------- | ---------------------------------------------------- | -------------------------------------------------- | ------------------------------------------------- | ------------ |
+| **InternLM3-8B-Instruct** | [🤗internlm3_8B_instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [
internlm3_8b_instruct](https://www.modelscope.cn/models/Shanghai_AI_Laboratory/internlm3-8b-instruct/summary) | [](https://modelers.cn/models/Intern/internlm3-8b-instruct) | 2025-01-15 |
## 环境准备
@@ -80,7 +80,6 @@ cd xtuner
```text
bitsandbytes==0.42.0
-mmengine==0.10.5
torchvision==0.19.0
numpy==1.26.4
```
@@ -128,24 +127,6 @@ model = dict(
# bnb_4bit_compute_dtype=torch.float16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type='nf4')),
- lora=dict(
- type=LoraConfig,
- r=64,
- lora_alpha=16,
- lora_dropout=0.1,
- bias='none',
- task_type='CAUSAL_LM'))
-
-custom_hooks = [
- dict(type=DatasetInfoHook, tokenizer=tokenizer),
- # dict(
- # type=EvaluateChatHook,
- # tokenizer=tokenizer,
- # every_n_iters=evaluation_freq,
- # evaluation_inputs=evaluation_inputs,
- # system=SYSTEM,
- # prompt_template=prompt_template)
-]
randomness = dict(seed=123, deterministic=True)
```
@@ -156,9 +137,9 @@ randomness = dict(seed=123, deterministic=True)
NPROC_PER_NODE=8 xtuner train internlm3_8b_instruct_lora_oasst1_e10.py --deepspeed deepspeed_zero2
```
-微调后结果保存在`./work_dirs/internlm3_8b_instruct_lora_oasst1_e10/iter_xxx.pth`,NPU与GPU的loss对比如下:
+微调后结果保存在`./work_dirs/internlm3_8b_instruct_lora_oasst1_e10/iter_xxx.pth`,NPU与GPU的loss对比如下:
-
+
### 模型转换
@@ -186,9 +167,9 @@ cp path_to_your_model/modeling_internlm3.py ./work_dirs/merge_output
xtuner chat ./work_dirs/merge_output --prompt-template internlm2_chat
```
-## LLama-Factory
+## LLaMA-Factory
-### 安装 LLaMa-Factory
+### 安装 LLaMA-Factory
```shell
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
@@ -198,7 +179,7 @@ pip install -e ".[torch-npu,metrics]"
### 推理
-在 LLaMa-Factory 路径下新建`examples/inference/internlm3_8b_instruct.yaml`推理配置文件,文件内容为:
+在 LLaMA-Factory 路径下新建`examples/inference/internlm3_8b_instruct.yaml`推理配置文件,文件内容为:
```yaml
model_name_or_path: xxx # Support only local loading. Set this parameter to the local weight path of InternLM3-8B-Instruct.
@@ -214,7 +195,7 @@ llamafactory-cli chat examples/inference/internlm3_8b_instruct.yaml
### 微调
-在 LLaMa-Factory 路径下新建`examples/train_full/internlm3_8b_instruct_full_sft.yaml`微调配置文件,微调配置文件如下:
+在 LLaMA-Factory 路径下新建`examples/train_full/internlm3_8b_instruct_full_sft.yaml`微调配置文件,微调配置文件如下:
```yaml
### model
@@ -273,7 +254,7 @@ llamafactory-cli train examples/train_full/internlm3_8b_instruct_full_sft.yaml
与GPU对比的loss曲线如下:
-
+
## Transformers
diff --git a/assets/lf_traing_loss_compare.png b/assets/lf_training_loss_compare.png
similarity index 100%
rename from assets/lf_traing_loss_compare.png
rename to assets/lf_training_loss_compare.png
diff --git a/assets/training_loss.png b/assets/training_loss.png
deleted file mode 100644
index 4c01e4d..0000000
Binary files a/assets/training_loss.png and /dev/null differ
diff --git a/assets/xtuner_loss.png b/assets/xtuner_training_loss_compare.png
similarity index 100%
rename from assets/xtuner_loss.png
rename to assets/xtuner_training_loss_compare.png