mirror of https://github.com/InternLM/InternLM
feat(tools): support openai api (#313)
* fix(chat): fix stream_chat to return generator (#123) * fix(configs/7B_sft.py): model dtype float16 to bfloat16 (#302) * fix(convert2hf.py): fix the rotary_emb.inv_freq KeyError (#299) * support openai api to deploy internlm * update README for information os openai_api.py * change example in README_EN.md to English * delete unnecessary print; fix model card typo; fix chat epoch --------- Co-authored-by: yingtongxiong <974106207@qq.com> Co-authored-by: zhjunqin <zhjunqin@users.noreply.github.com> Co-authored-by: huangting4201 <1538303371@qq.com> Co-authored-by: jiangtann <39088437+jiangtann@users.noreply.github.com>pull/315/head
parent
ab513e1ddd
commit
cd6426a249
|
@ -109,3 +109,29 @@ InternLM 在 GSM8K 数据集中带工具和不带工具的性能表现:
|
|||
| -------- | -------------------- |
|
||||
| w/o tool | 34.5 |
|
||||
| w tool | 39.2 |
|
||||
|
||||
# openai_api.py
|
||||
|
||||
使用 OpenAI 接口实现的流式部署,可以应用于基于 ChatGPT 的应用的后端。部署的命令为:
|
||||
|
||||
```bash
|
||||
python openai_api.py
|
||||
```
|
||||
|
||||
然后可以通过下面代码调用部署好的 api:
|
||||
|
||||
```python
|
||||
import openai
|
||||
if __name__ == "__main__":
|
||||
openai.api_base = "http://localhost:8000/internlm"
|
||||
openai.api_key = "none"
|
||||
for chunk in openai.ChatCompletion.create(
|
||||
model="internlm-chat-7b",
|
||||
messages=[
|
||||
{"role": "user", "content": "你好"},
|
||||
],
|
||||
stream=True
|
||||
):
|
||||
if hasattr(chunk.choices[0].delta, "content"):
|
||||
print(chunk.choices[0].delta.content, end="", flush=True)
|
||||
```
|
|
@ -107,3 +107,29 @@ InternLM performance in the GSM8K dataset with and without tools:
|
|||
| -------- | -------------------- |
|
||||
| w/o tool | 34.5 |
|
||||
| w tool | 39.2 |
|
||||
|
||||
# openai_api.py
|
||||
|
||||
`openai_api.py` implements stream deployment with OpenAI APIs which an be used on any applications based on ChatGPT. Below is the command to deploy `internlm`:
|
||||
|
||||
```bash
|
||||
python openai_api.py
|
||||
```
|
||||
|
||||
Then it is able to call the deployed API using the following python code:
|
||||
|
||||
```python
|
||||
import openai
|
||||
if __name__ == "__main__":
|
||||
openai.api_base = "http://localhost:8000/internlm"
|
||||
openai.api_key = "none"
|
||||
for chunk in openai.ChatCompletion.create(
|
||||
model="internlm-chat-7b",
|
||||
messages=[
|
||||
{"role": "user", "content": "Hello!"},
|
||||
],
|
||||
stream=True
|
||||
):
|
||||
if hasattr(chunk.choices[0].delta, "content"):
|
||||
print(chunk.choices[0].delta.content, end="", flush=True)
|
||||
```
|
||||
|
|
|
@ -0,0 +1,157 @@
|
|||
import time
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel, Field
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
class ModelCard(BaseModel):
|
||||
id: str
|
||||
object: str = "model"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
owned_by: str = "owner"
|
||||
root: Optional[str] = None
|
||||
parent: Optional[str] = None
|
||||
permission: Optional[list] = None
|
||||
|
||||
|
||||
class ModelList(BaseModel):
|
||||
object: str = "list"
|
||||
data: List[ModelCard] = []
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Literal["user", "assistant", "system"]
|
||||
content: str
|
||||
|
||||
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_length: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[Literal["stop", "length"]]
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
model: str
|
||||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||
|
||||
|
||||
@app.get("/internlm/models", response_model=ModelList)
|
||||
async def list_models():
|
||||
model_card = ModelCard(id="internlm")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
|
||||
@app.post("/internlm/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
global model, tokenizer
|
||||
|
||||
if request.messages[-1].role != "user":
|
||||
raise HTTPException(status_code=400, detail="Invalid request")
|
||||
query = request.messages[-1].content
|
||||
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
query = prev_messages.pop(0).content + query
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
for i in range(0, len(prev_messages), 2):
|
||||
if prev_messages[i].role == "user" and prev_messages[i + 1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i + 1].content])
|
||||
|
||||
if request.stream:
|
||||
generate = predict(query, history, request.model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
response, _ = model.chat(tokenizer, query, history=history)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop"
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||||
global model, tokenizer
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage(role="assistant"), finish_reason=None)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
current_length = 0
|
||||
|
||||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||||
if len(new_response) == current_length:
|
||||
continue
|
||||
|
||||
new_text = new_response[current_length:]
|
||||
|
||||
current_length = len(new_response)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage(), finish_reason="stop")
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = "internlm/internlm-chat-7b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
||||
model.eval()
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
|
Loading…
Reference in New Issue