add long text generation in doc/usage.md

pull/367/head
YWMditto 2023-09-26 14:20:35 +08:00
parent c1e30cff2c
commit cab875c41e
2 changed files with 16 additions and 0 deletions

View File

@ -385,3 +385,11 @@ Taking the configuration of the demo training on a single machine with 8 GPUs on
2023-07-07 12:29:13,147 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.65918563194305,step=4,loss=10.149517059326172,tgs (tokens/gpu/second)=4270.52,lr=1.2000000000000002e-06,loss_scale=65536.0,grad_norm=51.582841631508145,micro_num=4,num_consumed_tokens=655360,inf_nan_skip_batches=0,num_samples_in_batch=19,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.68
2023-07-07 12:29:16,994 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.3109313713174,step=5,loss=9.822169303894043,tgs (tokens/gpu/second)=4262.67,lr=1.4000000000000001e-06,loss_scale=65536.0,grad_norm=47.10386835560855,micro_num=4,num_consumed_tokens=786432,inf_nan_skip_batches=0,num_samples_in_batch=17,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.69
```
### Long Text Generation
During the inference phase, you can turn on the Dynamic NTK option of RoPE by setting `use_dynamic_ntk_rope=True` in the model configuration, so that the model can adapt to long text input and output and achieve an extrapolation effect of 16K.
Regarding the principle of Dyanmic NTK, please refer to
1. https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases
2. https://kexue.fm/archives/9675

View File

@ -368,3 +368,11 @@ $ torchrun --nnodes=1 --nproc_per_node=8 train.py --config ./configs/7B_sft.py -
2023-07-07 12:29:13,147 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.65918563194305,step=4,loss=10.149517059326172,tgs (tokens/gpu/second)=4270.52,lr=1.2000000000000002e-06,loss_scale=65536.0,grad_norm=51.582841631508145,micro_num=4,num_consumed_tokens=655360,inf_nan_skip_batches=0,num_samples_in_batch=19,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.68
2023-07-07 12:29:16,994 INFO train.py:323 in record_current_batch_training_metrics -- tflops=189.3109313713174,step=5,loss=9.822169303894043,tgs (tokens/gpu/second)=4262.67,lr=1.4000000000000001e-06,loss_scale=65536.0,grad_norm=47.10386835560855,micro_num=4,num_consumed_tokens=786432,inf_nan_skip_batches=0,num_samples_in_batch=17,largest_length=2048,largest_batch=6,smallest_batch=3,adam_beta2=0.95,fwd_bwd_time=3.69
```
### 长文本生成
在推理阶段,您可以在模型配置中通过设置 `use_dynamic_ntk_rope=True` 开启 RoPE 的 Dynamic NTK 选项,从而使得模型适应长文本输入输出,达到 16K 的外推效果。
关于 Dyanmic NTK 的原理,详细请参考
1. https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases
2. https://kexue.fm/archives/9675