mirror of https://github.com/InternLM/InternLM
add expert data support and fix bugs
parent
5f2e082b21
commit
c7f9d4f48c
|
@ -34,6 +34,9 @@ class ParallelMode(Enum):
|
|||
# expert parallel
|
||||
EXPERT = "expert"
|
||||
|
||||
# expert data parallel
|
||||
EXPERT_DATA = "expert_data"
|
||||
|
||||
|
||||
class ProcessGroupInitializer(ABC):
|
||||
"""An object, knowing the parallelism configuration, that initializes parallel groups.
|
||||
|
@ -400,3 +403,92 @@ class Initializer_Expert(ProcessGroupInitializer):
|
|||
ranks_in_group = ranks
|
||||
|
||||
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
||||
|
||||
|
||||
class Initializer_Expert_Data(ProcessGroupInitializer):
|
||||
"""A ProcessGroupInitializer for zero-1 parallelism.
|
||||
|
||||
Args:
|
||||
rank (int): The rank of current process.
|
||||
world_size (int): Size of whole communication world.
|
||||
data_parallel_size (int): Size of data parallel.
|
||||
pipeline_parallel_size (int): Size of pipeline parallel.
|
||||
tensor_parallel_size (int): Size of tensor parallel.
|
||||
zero1_parallel_size (int): Size of zero-1 parallel.
|
||||
expert_parallel_size (int): Size of expert parallel.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_expert_parallel_group = self.world_size // self.expert_parallel_size
|
||||
|
||||
assert self.world_size % self.rank_num_per_expert_group == 0
|
||||
|
||||
def _get_expert_parallel_ranks(self):
|
||||
"""
|
||||
Create expert and data parallel groups
|
||||
Example: world_size = 8, model_parallel_size = 2, expert_parallel_size = 2
|
||||
model_parallel_group = [0,1], [2,3], [4,5], [6,7]
|
||||
data_parallel_group = [0,2,4,6], [1,3,5,7]
|
||||
expert_parallel_group = [0,2], [4,6], [1,3], [5,7]
|
||||
expert_data_parallel_group = [0,4], [2,6], [1,5], [3,7]
|
||||
"""
|
||||
data_parallel_groups = []
|
||||
for i in range(self.model_parallel_size):
|
||||
data_parallel_groups.append(list(range(i, self.world_size, self.model_parallel_size)))
|
||||
|
||||
expert_parallel_groups = []
|
||||
expert_data_parallel_groups = []
|
||||
for dp_ranks in range(self.num_expert_parallel_group):
|
||||
# partition of expert parallel group, e.g. [0,2], [4,6]
|
||||
part_ep_group = []
|
||||
for i in range(0, self.data_parallel_size, self.expert_parallel_size):
|
||||
part_ep_group.append(dp_ranks[i : i + self.expert_parallel_size])
|
||||
expert_data_parallel_groups.extend(part_ep_group)
|
||||
|
||||
for expert_dp_ranks in zip(*part_ep_group):
|
||||
expert_data_parallel_groups.append(list(expert_dp_ranks))
|
||||
|
||||
return expert_parallel_groups, expert_data_parallel_groups
|
||||
|
||||
def init_dist_group(self, use_cpu: bool = False):
|
||||
"""Initialize expert parallel and expert data groups, and assign local_ranks and groups to each gpu.
|
||||
|
||||
Returns:
|
||||
list: [(local_rank, group_world_size, process_group, ranks_in_group, mode), ...]:
|
||||
A length 2 list consists of expert parallelism's and expert data parallelism's information tuple.
|
||||
"""
|
||||
expert_parallel_groups, expert_data_parallel_groups = self._get_expert_parallel_ranks()
|
||||
|
||||
groups = []
|
||||
for ranks in expert_parallel_groups:
|
||||
group = dist.new_group(ranks)
|
||||
if use_cpu:
|
||||
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
||||
else:
|
||||
group_cpu = None
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
groups.append((local_rank, group_world_size, process_group, cpu_group, ranks_in_group, ParallelMode.EXPERT))
|
||||
|
||||
for ranks in expert_data_parallel_groups:
|
||||
group = dist.new_group(ranks)
|
||||
if use_cpu:
|
||||
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
||||
else:
|
||||
group_cpu = None
|
||||
if self.rank in ranks:
|
||||
local_rank = ranks.index(self.rank)
|
||||
group_world_size = len(ranks)
|
||||
process_group = group
|
||||
cpu_group = group_cpu
|
||||
ranks_in_group = ranks
|
||||
groups.append(
|
||||
(local_rank, group_world_size, process_group, cpu_group, ranks_in_group, ParallelMode.EXPERT_DATA)
|
||||
)
|
||||
|
||||
return groups
|
||||
|
|
|
@ -492,7 +492,7 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
if not self._overlap_communication:
|
||||
for group_id in range(len(self._fp16_param_groups)):
|
||||
for param in self._fp16_param_groups[group_id]:
|
||||
if param.grad is not None:
|
||||
if param.grad is not None and not is_moe_param(param):
|
||||
self._store_and_try_reduce_grads_by_bucket(param)
|
||||
|
||||
# we need to reduce the gradients left in the communication bucket
|
||||
|
|
|
@ -30,6 +30,32 @@ def sync_model_param(model, parallel_mode):
|
|||
dist.broadcast(param, src=ranks[0], group=gpc.get_group(parallel_mode))
|
||||
|
||||
|
||||
def sync_tensor(tensor, parallel_mode):
|
||||
r"""Make sure data tensor(parameters) are consistent during Data and Expert Parallel Mode.
|
||||
|
||||
Args:
|
||||
tensor (:class:`torch.Tensor`): A parameters you check the consistency.
|
||||
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
|
||||
"""
|
||||
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
|
||||
ranks = gpc.get_ranks_in_group(parallel_mode)
|
||||
dist.broadcast(tensor, src=ranks[0], group=gpc.get_group(parallel_mode))
|
||||
|
||||
|
||||
# TODO: will be used in expert data parallel, may can also used in sync_model_param_within_tp
|
||||
def sync_model_param_within_ep(model):
|
||||
r"""Make sure data parameters are consistent during Data Parallel Mode.
|
||||
|
||||
Args:
|
||||
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
|
||||
"""
|
||||
for param in model.parameters():
|
||||
if is_moe_param(param):
|
||||
sync_tensor(param, ParallelMode.EXPERT_DATA)
|
||||
else:
|
||||
sync_tensor(param, ParallelMode.DATA)
|
||||
|
||||
|
||||
def sync_model_param_within_tp(model):
|
||||
r"""This function is changed from colossalai, which is ``sync_model_param``.
|
||||
|
||||
|
|
Loading…
Reference in New Issue