add expert data support and fix bugs

pull/375/head
Wenwen Qu 2023-08-10 16:07:35 +08:00
parent 5f2e082b21
commit c7f9d4f48c
3 changed files with 119 additions and 1 deletions

View File

@ -34,6 +34,9 @@ class ParallelMode(Enum):
# expert parallel
EXPERT = "expert"
# expert data parallel
EXPERT_DATA = "expert_data"
class ProcessGroupInitializer(ABC):
"""An object, knowing the parallelism configuration, that initializes parallel groups.
@ -400,3 +403,92 @@ class Initializer_Expert(ProcessGroupInitializer):
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_Expert_Data(ProcessGroupInitializer):
"""A ProcessGroupInitializer for zero-1 parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero-1 parallel.
expert_parallel_size (int): Size of expert parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_expert_parallel_group = self.world_size // self.expert_parallel_size
assert self.world_size % self.rank_num_per_expert_group == 0
def _get_expert_parallel_ranks(self):
"""
Create expert and data parallel groups
Example: world_size = 8, model_parallel_size = 2, expert_parallel_size = 2
model_parallel_group = [0,1], [2,3], [4,5], [6,7]
data_parallel_group = [0,2,4,6], [1,3,5,7]
expert_parallel_group = [0,2], [4,6], [1,3], [5,7]
expert_data_parallel_group = [0,4], [2,6], [1,5], [3,7]
"""
data_parallel_groups = []
for i in range(self.model_parallel_size):
data_parallel_groups.append(list(range(i, self.world_size, self.model_parallel_size)))
expert_parallel_groups = []
expert_data_parallel_groups = []
for dp_ranks in range(self.num_expert_parallel_group):
# partition of expert parallel group, e.g. [0,2], [4,6]
part_ep_group = []
for i in range(0, self.data_parallel_size, self.expert_parallel_size):
part_ep_group.append(dp_ranks[i : i + self.expert_parallel_size])
expert_data_parallel_groups.extend(part_ep_group)
for expert_dp_ranks in zip(*part_ep_group):
expert_data_parallel_groups.append(list(expert_dp_ranks))
return expert_parallel_groups, expert_data_parallel_groups
def init_dist_group(self, use_cpu: bool = False):
"""Initialize expert parallel and expert data groups, and assign local_ranks and groups to each gpu.
Returns:
list: [(local_rank, group_world_size, process_group, ranks_in_group, mode), ...]:
A length 2 list consists of expert parallelism's and expert data parallelism's information tuple.
"""
expert_parallel_groups, expert_data_parallel_groups = self._get_expert_parallel_ranks()
groups = []
for ranks in expert_parallel_groups:
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
groups.append((local_rank, group_world_size, process_group, cpu_group, ranks_in_group, ParallelMode.EXPERT))
for ranks in expert_data_parallel_groups:
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
groups.append(
(local_rank, group_world_size, process_group, cpu_group, ranks_in_group, ParallelMode.EXPERT_DATA)
)
return groups

View File

@ -492,7 +492,7 @@ class HybridZeroOptimizer(BaseOptimizer):
if not self._overlap_communication:
for group_id in range(len(self._fp16_param_groups)):
for param in self._fp16_param_groups[group_id]:
if param.grad is not None:
if param.grad is not None and not is_moe_param(param):
self._store_and_try_reduce_grads_by_bucket(param)
# we need to reduce the gradients left in the communication bucket

View File

@ -30,6 +30,32 @@ def sync_model_param(model, parallel_mode):
dist.broadcast(param, src=ranks[0], group=gpc.get_group(parallel_mode))
def sync_tensor(tensor, parallel_mode):
r"""Make sure data tensor(parameters) are consistent during Data and Expert Parallel Mode.
Args:
tensor (:class:`torch.Tensor`): A parameters you check the consistency.
parallel_mode (:class:`internlm.core.context.ParallelMode`): Parallel mode to be checked.
"""
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
ranks = gpc.get_ranks_in_group(parallel_mode)
dist.broadcast(tensor, src=ranks[0], group=gpc.get_group(parallel_mode))
# TODO: will be used in expert data parallel, may can also used in sync_model_param_within_tp
def sync_model_param_within_ep(model):
r"""Make sure data parameters are consistent during Data Parallel Mode.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
"""
for param in model.parameters():
if is_moe_param(param):
sync_tensor(param, ParallelMode.EXPERT_DATA)
else:
sync_tensor(param, ParallelMode.DATA)
def sync_model_param_within_tp(model):
r"""This function is changed from colossalai, which is ``sync_model_param``.