bind seed

pull/496/head
lijiaxing 2023-11-13 20:03:19 +08:00
parent 2b984ffa58
commit c53667d70c
2 changed files with 22 additions and 0 deletions

View File

@ -27,6 +27,7 @@ else:
get_numa = True
logger = get_logger(__file__)
GLOBAL_SEED = 1024
def get_default_parser():
@ -531,6 +532,9 @@ def initialize_distributed_env(
else:
assert launcher in ["slurm", "torch"], "launcher only support slurm or torch"
global GLOBAL_SEED
GLOBAL_SEED = seed
if args_check:
args_sanity_check()

View File

@ -2,8 +2,11 @@
# -*- encoding: utf-8 -*-
import math
import random
from functools import wraps
from typing import Optional
import numpy as np
import torch
from flash_attn.modules.embedding import ParallelGPT2Embeddings
from flash_attn.modules.mlp import ParallelFusedMLP
@ -12,6 +15,7 @@ from torch import nn
from internlm.core.context import IS_SEQUENCE_PARALLEL, IS_TENSOR_PARALLEL, ParallelMode
from internlm.core.context.parallel_context import global_context as gpc
from internlm.initialize.initialize_tensor import normal_, scaled_init_method_normal
from internlm.initialize.launch import GLOBAL_SEED
from internlm.model.embedding import Embedding1D
from internlm.model.linear import (
FeedForward,
@ -81,6 +85,7 @@ class PackedFlashBaseLayer1D(nn.Module):
self.use_flash_attn = use_flash_attn
head_dim = hidden_size // num_attention_heads
self.mixer = MHA(
embed_dim=hidden_size,
num_heads=num_attention_heads,
@ -410,6 +415,18 @@ class PackedFlashInternLm1D(nn.Module):
return hidden_states
def fix_seed(func):
@wraps(func)
def wrapper(*args, **kwargs):
seed = GLOBAL_SEED
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
func(*args, **kwargs)
return wrapper
def _build_generic_model_1d(num_layers, num_chunks, device=torch.device("cuda"), **kwargs):
"""
build generic model 1d
@ -429,6 +446,7 @@ def _build_generic_model_1d(num_layers, num_chunks, device=torch.device("cuda"),
logger.info(f"The layer sharding is {all_parts}.")
models = []
PackedFlashInternLm1D.__init__ = fix_seed(PackedFlashInternLm1D.__init__)
for start, end in parts:
kwargs["num_layers"] = end - start