update demo

pull/820/head
braisedpork1964 2025-01-13 07:40:55 +00:00
parent b49ebba597
commit c23c80a810
1 changed files with 161 additions and 63 deletions

View File

@ -14,8 +14,10 @@ Please run with the command `streamlit run path/to/web_demo.py
--server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""
# isort: skip_file
import copy
import re
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional
@ -25,13 +27,13 @@ import torch
from torch import nn
import transformers
from transformers.generation.utils import (LogitsProcessorList,
StoppingCriteriaList)
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from transformers.utils import logging
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
logger = logging.get_logger(__name__)
st.set_page_config(layout='wide')
@dataclass
@ -52,8 +54,7 @@ def generate_interactive(
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
List[int]]] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
additional_eos_token_id: Optional[int] = None,
**kwargs,
):
@ -75,8 +76,7 @@ def generate_interactive(
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get(
'max_length') is None and generation_config.max_length is not None
has_default_max_length = kwargs.get('max_length') is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using 'max_length''s default \
@ -89,8 +89,7 @@ def generate_interactive(
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + \
input_ids_seq_length
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn( # pylint: disable=W4902
f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
@ -108,13 +107,12 @@ def generate_interactive(
f'Input length of {input_ids_string} is {input_ids_seq_length}, '
f"but 'max_length' is set to {generation_config.max_length}. "
'This can lead to unexpected behavior. You should consider'
" increasing 'max_new_tokens'.")
" increasing 'max_new_tokens'."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None \
else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None \
else StoppingCriteriaList()
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
@ -125,20 +123,18 @@ def generate_interactive(
)
stopping_criteria = model._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria)
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if transformers.__version__ >= '4.42.0':
logits_warper = model._get_logits_warper(generation_config,
device='cuda')
logits_warper = model._get_logits_warper(generation_config, device='cuda')
else:
logits_warper = model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = model.prepare_inputs_for_generation(
input_ids, **model_kwargs)
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
@ -162,10 +158,8 @@ def generate_interactive(
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=False)
unfinished_sequences = unfinished_sequences.mul(
(min(next_tokens != i for i in eos_token_id)).long())
model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
@ -177,38 +171,38 @@ def generate_interactive(
yield response
# stop when each sentence is finished
# or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(
input_ids, scores):
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
break
def on_btn_click():
del st.session_state.messages
del st.session_state.deepthink_messages
del st.session_state.deep_mode
def postprocess(text):
text = re.sub(r'\\\(|\\\)', r'$', text)
text = re.sub(r'\\\[|\\\]', r'$$', text)
return text
@st.cache_resource
def load_model():
model = (AutoModelForCausalLM.from_pretrained(
'internlm/internlm2_5-7b-chat',
trust_remote_code=True).to(torch.bfloat16).cuda())
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm2_5-7b-chat',
trust_remote_code=True)
model_path = 'internlm/internlm2_5-7b-chat'
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider('Max Length',
min_value=8,
max_value=32768,
value=32768)
max_length = st.slider('Max Length', min_value=8, max_value=32768, value=32768)
top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
st.button('Clear Chat History', on_click=on_btn_click)
generation_config = GenerationConfig(max_length=max_length,
top_p=top_p,
temperature=temperature)
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
@ -219,11 +213,73 @@ cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
<|im_start|>assistant\n'
def combine_history(prompt):
messages = st.session_state.messages
meta_instruction = ('You are InternLM (书生·浦语), a helpful, honest, '
'and harmless AI assistant developed by Shanghai '
'AI Laboratory (上海人工智能实验室).')
def combine_history(prompt, deepthink=False, start=0, stop=None):
if stop is None:
stop = len(st.session_state.messages)
elif stop < 0:
stop = len(st.session_state.messages) + stop
messages = []
for idx in range(start, stop):
message, deepthink_message = st.session_state.messages[idx], st.session_state.deepthink_messages[idx]
if deepthink and deepthink_message['content'] is not None:
messages.append(deepthink_message)
else:
messages.append(message)
meta_instruction = (
(
"""You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
)
if deepthink
else (
'You are InternLM (书生·浦语), a helpful, honest, '
'and harmless AI assistant developed by Shanghai '
'AI Laboratory (上海人工智能实验室).'
)
)
total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
for message in messages:
cur_content = message['content']
@ -247,50 +303,92 @@ def main():
user_avator = 'assets/user.png'
robot_avator = 'assets/robot.png'
st.title('internlm2_5-7b-chat')
st.title('internlm3-8b-chat')
generation_config = prepare_generation_config()
# Initialize chat history
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'deepthink_messages' not in st.session_state:
st.session_state.deepthink_messages = []
if 'deep_mode' not in st.session_state:
st.session_state.deep_mode = {}
# Display chat messages from history on app rerun
for message in st.session_state.messages:
for idx, (message, deepthink_message) in enumerate(
zip(st.session_state.messages, st.session_state.deepthink_messages)
):
with st.chat_message(message['role'], avatar=message.get('avatar')):
st.markdown(message['content'])
if message['role'] == 'user':
st.markdown(postprocess(message['content']))
else:
if st.button('深度思考', key=f'deep_mode_{idx}'):
st.session_state.deep_mode[idx] = not st.session_state.deep_mode.get(idx, False)
if st.session_state.deep_mode.get(idx, False):
cols = st.columns(2)
with cols[0]:
st.markdown(postprocess(message['content']))
with cols[1]:
if deepthink_message['content'] is None:
real_prompt = combine_history(
st.session_state.deepthink_messages[idx - 1]['content'], deepthink=True, stop=idx - 1
)
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(postprocess(cur_response) + '')
message_placeholder.markdown(postprocess(cur_response))
deepthink_message['content'] = cur_response
else:
st.markdown(postprocess(deepthink_message['content']))
else:
st.markdown(postprocess(message['content']))
# Accept user input
if prompt := st.chat_input('What is up?'):
# Display user message in chat message container
with st.chat_message('user', avatar=user_avator):
st.markdown(prompt)
st.markdown(postprocess(prompt))
real_prompt = combine_history(prompt)
# Add user message to chat history
st.session_state.messages.append({
'role': 'user',
'content': prompt,
'avatar': user_avator
})
st.session_state.messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
st.session_state.deepthink_messages.append({'role': 'user', 'content': prompt, 'avatar': user_avator})
with st.chat_message('robot', avatar=robot_avator):
st.button('深度思考', key=f'deep_mode_{len(st.session_state.messages)}')
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=92542,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(cur_response + '')
message_placeholder.markdown(cur_response)
message_placeholder.markdown(postprocess(cur_response) + '')
message_placeholder.markdown(postprocess(cur_response))
# Add robot response to chat history
st.session_state.messages.append({
'role': 'robot',
'content': cur_response, # pylint: disable=undefined-loop-variable
'avatar': robot_avator,
})
st.session_state.messages.append(
{
'role': 'robot',
'content': cur_response, # pylint: disable=undefined-loop-variable
'avatar': robot_avator,
}
)
st.session_state.deepthink_messages.append(
{
'role': 'robot',
'content': None,
'avatar': robot_avator,
}
)
torch.cuda.empty_cache()