mirror of https://github.com/InternLM/InternLM
fix(tools): fix streaming_chat and update docs (#467)
* move hf model to tools/transformers/internlm_model * fix stream_chat * Add stream_chat example * fix import * Add __init__ to internlm_model * Add hf link * fix import of tools/tokenizer.py * fix huggingface url in readmepull/474/head
parent
debb7e77b9
commit
b9c813a972
|
@ -103,6 +103,22 @@ Transformers を使用して InternLM 7B チャットモデルをロードする
|
|||
これらの提案を実践することで、時間管理のスキルを向上させ、効果的に日々のタスクをこなしていくことができます。
|
||||
```
|
||||
|
||||
ストリーミング生成を行いたい場合は、「stream_chat」関数を使用できます。
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
model = model.eval()
|
||||
length = 0
|
||||
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
|
||||
print(response[length:], flush=True, end="")
|
||||
length = len(response)
|
||||
```
|
||||
|
||||
### 対話
|
||||
|
||||
以下のコードを実行することで、フロントエンドインターフェースを通して InternLM Chat 7B モデルと対話することができます:
|
||||
|
|
|
@ -178,6 +178,22 @@ InternLM-7B 包含了一个拥有70亿参数的基础模型和一个为实际场
|
|||
3. 集中注意力:避免分心,集中注意力完成任务。关闭社交媒体和电子邮件通知,专注于任务,这将帮助您更快地完成任务,并减少错误的可能性。
|
||||
```
|
||||
|
||||
如果想进行流式生成,则可以使用 `stream_chat` 接口:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
model = model.eval()
|
||||
length = 0
|
||||
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
|
||||
print(response[length:], flush=True, end="")
|
||||
length = len(response)
|
||||
```
|
||||
|
||||
### 通过 ModelScope 加载
|
||||
|
||||
通过以下的代码从 ModelScope 加载 InternLM 模型 (可修改模型名称替换不同的模型)
|
||||
|
|
16
README.md
16
README.md
|
@ -175,6 +175,22 @@ Sure, here are three tips for effective time management:
|
|||
Remember, good time management skills take practice and patience. Start with small steps and gradually incorporate these habits into your daily routine.
|
||||
```
|
||||
|
||||
The responses can be streamed using `stream_chat`:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "/mnt/petrelfs/share_data/xingshuhao/internlm-chat-7b/"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
model = model.eval()
|
||||
length = 0
|
||||
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
|
||||
print(response[length:], flush=True, end="")
|
||||
length = len(response)
|
||||
```
|
||||
|
||||
### Import from ModelScope
|
||||
|
||||
To load the InternLM model using ModelScope, use the following code:
|
||||
|
|
|
@ -8,7 +8,7 @@ import numpy as np
|
|||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
model_path = os.path.join(current_dir, "V7_sft.model")
|
||||
sys.path.append(os.path.join(current_dir, "transformers"))
|
||||
from tokenization_internlm import InternLMTokenizer
|
||||
from internlm_model import InternLMTokenizer
|
||||
|
||||
tokenizer = InternLMTokenizer(vocab_file=model_path)
|
||||
|
||||
|
|
|
@ -6,8 +6,7 @@ import re
|
|||
import tempfile
|
||||
|
||||
import torch
|
||||
from modeling_internlm import InternLMConfig, InternLMForCausalLM
|
||||
from tokenization_internlm import InternLMTokenizer
|
||||
from internlm_model import InternLMConfig, InternLMForCausalLM, InternLMTokenizer
|
||||
|
||||
NUM_SHARDS = {
|
||||
"7B": 1,
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from .configuration_internlm import InternLMConfig
|
||||
from .modeling_internlm import InternLMForCausalLM
|
||||
from .tokenization_internlm import InternLMTokenizer
|
|
@ -28,27 +28,17 @@ from torch import nn
|
|||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
SequenceClassifierOutputWithPast,
|
||||
)
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.generation.streamers import BaseStreamer
|
||||
from transformers.utils import (
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from configuration_internlm import InternLMConfig
|
||||
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
||||
from .configuration_internlm import InternLMConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CONFIG_FOR_DOC = "InternLMConfig"
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
||||
def _make_causal_mask(
|
||||
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
||||
|
@ -106,7 +96,7 @@ class InternLMRotaryEmbedding(torch.nn.Module):
|
|||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||||
super().__init__()
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||||
self.register_buffer("inv_freq", inv_freq)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
|
@ -332,11 +322,9 @@ INTERNLM_START_DOCSTRING = r"""
|
|||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`InternLMConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
|
@ -377,44 +365,33 @@ INTERNLM_INPUTS_DOCSTRING = r"""
|
|||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`.
|
||||
|
||||
[What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
|
@ -443,11 +420,9 @@ INTERNLM_INPUTS_DOCSTRING = r"""
|
|||
class InternLMModel(InternLMPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: InternLMConfig
|
||||
"""
|
||||
|
||||
_auto_class = "AutoModel"
|
||||
|
||||
def __init__(self, config: InternLMConfig):
|
||||
|
@ -673,20 +648,14 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
||||
|
||||
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
||||
|
||||
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
|
@ -776,58 +745,50 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
for layer_past in past_key_values:
|
||||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||||
return reordered_past
|
||||
|
||||
|
||||
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
||||
prompt = ""
|
||||
for record in history:
|
||||
prompt += f"""<s><|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
|
||||
if len(prompt) == 0:
|
||||
prompt += "<s>"
|
||||
prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
|
||||
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
|
||||
return tokenizer([prompt], return_tensors="pt")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def chat(
|
||||
self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = [],
|
||||
streamer: Optional[BaseStreamer] = None,
|
||||
max_new_tokens: int = 1024,
|
||||
do_sample: bool = True,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.8,
|
||||
**kwargs,
|
||||
):
|
||||
def chat(self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = [],
|
||||
streamer: Optional[BaseStreamer] = None,
|
||||
max_new_tokens: int = 1024,
|
||||
do_sample: bool = True,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.8,
|
||||
**kwargs):
|
||||
inputs = self.build_inputs(tokenizer, query, history)
|
||||
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
||||
outputs = self.generate(
|
||||
**inputs,
|
||||
streamer=streamer,
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=do_sample,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
**kwargs,
|
||||
)
|
||||
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
||||
outputs = self.generate(**inputs,
|
||||
streamer=streamer,
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=do_sample,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
**kwargs)
|
||||
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
response = response.split("<eoa>")[0]
|
||||
history = history + [(query, response)]
|
||||
return response, history
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def stream_chat(
|
||||
self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = [],
|
||||
max_new_tokens: int = 1024,
|
||||
do_sample: bool = True,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.8,
|
||||
**kwargs,
|
||||
):
|
||||
def stream_chat(self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = [],
|
||||
max_new_tokens: int = 1024,
|
||||
do_sample: bool = True,
|
||||
temperature: float = 0.8,
|
||||
top_p: float = 0.8,
|
||||
**kwargs):
|
||||
"""
|
||||
Return a generator in format: (response, history)
|
||||
Eg.
|
||||
|
@ -873,12 +834,12 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
tokenizer=tokenizer,
|
||||
query=query,
|
||||
streamer=ChatStreamer(tokenizer=tokenizer),
|
||||
history=history,
|
||||
history=history,
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=do_sample,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
**kwargs,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def consumer():
|
||||
|
@ -886,7 +847,7 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
producer.start()
|
||||
while True:
|
||||
res = response_queue.get()
|
||||
if res is not None:
|
||||
if res is None:
|
||||
return
|
||||
yield res
|
||||
|
||||
|
@ -896,10 +857,8 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
@add_start_docstrings(
|
||||
"""
|
||||
The InternLM Model transformer with a sequence classification head on top (linear layer).
|
||||
|
||||
[`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||||
(e.g. GPT-2) do.
|
||||
|
||||
Since it does classification on the last token, it requires to know the position of the last token. If a
|
||||
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
||||
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
Loading…
Reference in New Issue