mirror of https://github.com/InternLM/InternLM
merge Internlm/develop into feature_add_moe
commit
b7ddc42dcd
|
@ -0,0 +1,56 @@
|
|||
name: e2e-tests
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
- "develop"
|
||||
paths-ignore:
|
||||
- "doc/**"
|
||||
- "**.md"
|
||||
env:
|
||||
WORKSPACE_PREFIX: $(echo $GITHUB_WORKSPACE |cut -d '/' -f 1-4)
|
||||
SLURM_PARTITION: llm
|
||||
|
||||
jobs:
|
||||
check-requirements:
|
||||
runs-on: [lmtest]
|
||||
steps:
|
||||
- name: mask env
|
||||
run: |
|
||||
echo "::add-mask::${{env.WORKSPACE_PREFIX}}"
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: check-requirements
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
changed_files=$(git diff --name-only -r HEAD^1 HEAD)
|
||||
echo $changed_files
|
||||
if [[ $changed_files =~ "runtime.txt" ]]; then
|
||||
pip install -r requirements/runtime.txt
|
||||
fi
|
||||
|
||||
if [[ $changed_files =~ "torch.txt" ]]; then
|
||||
pip install -r requirements/torch.txt
|
||||
fi
|
||||
|
||||
|
||||
e2e_tests:
|
||||
if: ${{ always() }}
|
||||
needs: check-requirements
|
||||
runs-on: [lmtest]
|
||||
timeout-minutes: 30
|
||||
steps:
|
||||
- name: mask env
|
||||
run: |
|
||||
echo "::add-mask::${{env.WORKSPACE_PREFIX}}"
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: e2e-test
|
||||
run: |
|
||||
source activate internlm-env-test
|
||||
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n8 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_8GPU" ./tests/test_training
|
||||
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2TP" ./tests/test_training
|
||||
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2TPSP" ./tests/test_training
|
||||
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2PP" ./tests/test_training
|
||||
srun -p ${SLURM_PARTITION} --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} -n16 --ntasks-per-node=8 --cpus-per-task=4 --gpus-per-task=1 pytest -s -v --color=yes -m "training_16GPU_8DP2PP_InterleavedOverlap" ./tests/test_training
|
|
@ -263,6 +263,12 @@ def args_sanity_check():
|
|||
gpc.config.parallel.sequence_parallel is True and gpc.config.model.use_flash_attn is False
|
||||
), "sequence parallel does not support use_flash_attn=False"
|
||||
|
||||
# currently only interleaved pipeline scheduler with overlap can guarantee loss accuracy
|
||||
if hasattr(gpc.config.model, "num_chunks") and gpc.config.model.num_chunks > 1:
|
||||
assert (
|
||||
gpc.config.parallel["pipeline"].get("interleaved_overlap", False) is True
|
||||
), "only support interleaved pipeline scheduler with overlap"
|
||||
|
||||
# monitoring default config
|
||||
monitor_default_config = {
|
||||
"alert_address": None, # compatible with old alert config
|
||||
|
|
|
@ -4,14 +4,13 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
||||
from flash_attn.utils.distributed import all_reduce, reduce_scatter
|
||||
from torch import nn
|
||||
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.model.utils import fused_dense_func_torch
|
||||
from internlm.model.utils import Silu, fused_dense_func_torch
|
||||
|
||||
|
||||
class ScaleColumnParallelLinear(nn.Linear):
|
||||
|
@ -197,5 +196,7 @@ class FeedForward(nn.Module):
|
|||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.w3(F.silu(self.w1(x)) * self.w2(x))
|
||||
w1_o = self.w1(x)
|
||||
w2_o = self.w2(x)
|
||||
out = self.w3(Silu(w1_o, w2_o))
|
||||
return out
|
||||
|
|
|
@ -225,3 +225,10 @@ def is_norm_param(param: torch.Tensor) -> bool:
|
|||
if hasattr(param, "is_norm") and param.is_norm:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def Silu(w1_o, w2_o):
|
||||
return F.silu(w1_o) * w2_o
|
||||
|
||||
|
||||
Silu = torch.jit.script(Silu)
|
||||
|
|
|
@ -0,0 +1,390 @@
|
|||
import math
|
||||
import subprocess
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import internlm
|
||||
from internlm.core.context import ParallelMode
|
||||
from internlm.core.context import global_context as gpc
|
||||
from internlm.core.scheduler import SchedulerMetricHook
|
||||
from internlm.core.trainer import TrainState
|
||||
from internlm.initialize import initialize_distributed_env
|
||||
from internlm.model.loss import FlashGPTLMLoss
|
||||
from internlm.model.metrics import AccPerplex
|
||||
from internlm.train import (
|
||||
get_train_data_loader,
|
||||
initialize_model,
|
||||
initialize_optimizer,
|
||||
load_new_batch,
|
||||
)
|
||||
from internlm.utils.common import BatchSkipper, launch_time
|
||||
from internlm.utils.gputest import empty_cache_and_diag
|
||||
from internlm.utils.megatron_timers import megatron_timer as timer
|
||||
from internlm.utils.model_checkpoint import CheckpointManager
|
||||
|
||||
CONFIG_FILE_PATH = "./configs/7B_sft.py"
|
||||
TOTAL_STEPS = 10
|
||||
LOSS_SPIKE_LIMIT = 1.5
|
||||
LOSS_DEVIATION_LIMIT = 0.2
|
||||
BASELINE_LOSS_LIST = [
|
||||
11.64188003540039,
|
||||
7.9205322265625,
|
||||
6.944362163543701,
|
||||
6.147305488586426,
|
||||
6.060564994812012,
|
||||
5.660439491271973,
|
||||
5.19430685043335,
|
||||
5.157323837280273,
|
||||
4.769168376922607,
|
||||
4.449280738830566,
|
||||
]
|
||||
cur_loss_list = []
|
||||
|
||||
|
||||
def train():
|
||||
# initialize distributed environment
|
||||
initialize_distributed_env(config=CONFIG_FILE_PATH)
|
||||
assert hasattr(gpc, "config") and gpc.config is not None
|
||||
|
||||
# init setting
|
||||
gpc.config.data.total_steps = TOTAL_STEPS
|
||||
gpc.config.lr_scheduler.total_steps = TOTAL_STEPS
|
||||
total_steps = gpc.config.data.total_steps
|
||||
skip_batches = gpc.config.data.skip_batches
|
||||
label_smoothing = gpc.config.loss.label_smoothing
|
||||
|
||||
# get and broadcast current time
|
||||
current_time = launch_time()
|
||||
objs = [current_time]
|
||||
dist.broadcast_object_list(objs, src=0)
|
||||
current_time = objs[0]
|
||||
|
||||
# initialize model
|
||||
model = initialize_model()
|
||||
|
||||
# initialize loss function
|
||||
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=label_smoothing)
|
||||
|
||||
# initialize the train data loader
|
||||
train_dl, dataset_types = get_train_data_loader(num_worker=4)
|
||||
|
||||
# initialize and resume train state
|
||||
train_state = TrainState(gpc.config, train_dl.batch_sampler)
|
||||
|
||||
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=model)
|
||||
|
||||
with open(CONFIG_FILE_PATH, "r") as f:
|
||||
config_lines = f.readlines()
|
||||
ckpt_manager = CheckpointManager(
|
||||
ckpt_config=gpc.config.ckpt,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
train_dl=train_dl,
|
||||
model_config=gpc.config.model,
|
||||
model_config_file="".join(config_lines),
|
||||
feishu_address=gpc.config.monitor.alert.feishu_alert_address,
|
||||
)
|
||||
|
||||
# Loading other persistent training states.
|
||||
ckpt_manager.try_resume_training(train_state, current_time)
|
||||
|
||||
# initialize metric for calculating accuracy and perplexity
|
||||
metric = AccPerplex(
|
||||
device=torch.cuda.current_device(),
|
||||
tp_pg=gpc.get_group(ParallelMode.TENSOR),
|
||||
dp_pg=gpc.get_group(ParallelMode.DATA),
|
||||
dataset_types=dataset_types,
|
||||
)
|
||||
|
||||
# initialize trainer
|
||||
scheduler_hooks = [
|
||||
SchedulerMetricHook(
|
||||
metric=metric,
|
||||
skip=(
|
||||
gpc.is_using_pp()
|
||||
and hasattr(gpc.config.model, "num_chunks")
|
||||
and gpc.config.model.num_chunks > 1
|
||||
and gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
trainer, train_dl, _, _ = internlm.initialize_trainer(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dl,
|
||||
lr_scheduler=lr_scheduler,
|
||||
beta2_scheduler=beta2_scheduler,
|
||||
scheduler_hooks=scheduler_hooks,
|
||||
)
|
||||
|
||||
# initialize the batch skipper
|
||||
batch_skipper = BatchSkipper(skip_batches)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# transfer the train data loader into train data iterator
|
||||
train_iter = iter(train_dl)
|
||||
|
||||
# start iterating the train data and begin training
|
||||
for batch_count in range(train_state.batch_count, total_steps):
|
||||
empty_cache_and_diag(batch_count, interval=gpc.config.data.empty_cache_and_diag_interval)
|
||||
timer("one-batch").start()
|
||||
|
||||
# load batch data
|
||||
batch, train_iter = load_new_batch(train_dl=train_dl, train_iter=train_iter, train_state=train_state)
|
||||
|
||||
# record the consumed samples in training
|
||||
train_state.batch_count = batch_count
|
||||
train_state.num_consumed_samples_in_epoch += len(batch[1])
|
||||
if batch_skipper(batch_count): # skip this batch
|
||||
if gpc.is_rank_for_log():
|
||||
print(f"Skip batch count:`{batch_count}`...")
|
||||
timer("one-batch").stop()
|
||||
continue
|
||||
|
||||
# zero the grads of parameters
|
||||
trainer.zero_grad()
|
||||
# process data
|
||||
if batch[0].get("type_ids", None) is not None:
|
||||
metric.set_current_type_ids(type_ids=batch[0].pop("type_ids", None))
|
||||
|
||||
# do forward and backward
|
||||
timer("fwd-bwd").start()
|
||||
|
||||
_, _, loss = trainer.execute_schedule(batch, forward_only=False, return_loss=True, return_output_label=False)
|
||||
if gpc.is_rank_for_log():
|
||||
assert loss is not None and not math.isnan(loss.item())
|
||||
global cur_loss_list
|
||||
cur_loss_list.append(loss.item())
|
||||
timer("fwd-bwd").stop()
|
||||
|
||||
# update parameters, and returns (success_update, grad_norm)
|
||||
trainer_result = trainer.step()
|
||||
assert trainer_result is not None
|
||||
|
||||
success_update, _ = trainer_result
|
||||
assert success_update, "Error: grad norm inf or nan occurs!"
|
||||
if success_update: # update parameters successfully
|
||||
train_state.step_count += 1
|
||||
else:
|
||||
train_state.inf_nan_skip_batches += 1 # record the amount of updating parameters unsuccessfully.
|
||||
|
||||
timer("one-batch").stop()
|
||||
|
||||
|
||||
def check_loss_spike():
|
||||
if gpc.is_rank_for_log():
|
||||
for step in range(1, TOTAL_STEPS):
|
||||
assert (
|
||||
cur_loss_list[step] < cur_loss_list[step - 1] * LOSS_SPIKE_LIMIT
|
||||
), f"The loss spike occurs, {cur_loss_list[step - 1]}->{cur_loss_list[step]}, please check it!"
|
||||
|
||||
|
||||
def check_loss_accuracy():
|
||||
if gpc.is_rank_for_log():
|
||||
for cur, target in zip(cur_loss_list, BASELINE_LOSS_LIST):
|
||||
assert (
|
||||
abs(cur - target) < LOSS_DEVIATION_LIMIT
|
||||
), f"The loss accuracy is abnormal, {target}->{cur}, please check it!"
|
||||
|
||||
|
||||
class TestCaseTrain8GPU:
|
||||
"""
|
||||
Test cases for Model Training with 8 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_8GPU
|
||||
def test_loss_spike_with_dp8():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_8GPU
|
||||
def test_loss_accuracy_with_dp8():
|
||||
check_loss_accuracy()
|
||||
|
||||
|
||||
class TestCaseTrain16GPUWith8DP2TP:
|
||||
"""
|
||||
Test cases for Model Training with 16 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
tensor parallel size = 2.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# update config tensor parallel size
|
||||
command = f"sed -i 's/^.*tensor=.*/ tensor=2,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2TP
|
||||
def test_loss_spike_with_dp8_tp2():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2TP
|
||||
def test_loss_accuracy_with_dp8_tp2():
|
||||
check_loss_accuracy()
|
||||
|
||||
|
||||
class TestCaseTrain16GPUWith8DP2TPSP:
|
||||
"""
|
||||
Test cases for Model Training with 16 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
tensor parallel size = 2.
|
||||
sequence parallel = True.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# update config tensor parallel size and sequence parallel
|
||||
command = f"sed -i 's/^.*tensor=.*/ tensor=2,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*sequence_parallel=.*/ sequence_parallel=True,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2TPSP
|
||||
def test_loss_spike_with_dp8_tp2_sp():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2TPSP
|
||||
def test_loss_accuracy_with_dp8_tp2_sp():
|
||||
check_loss_accuracy()
|
||||
|
||||
|
||||
class TestCaseTrain16GPUWith8DP2PP:
|
||||
"""
|
||||
Test cases for Model Training with 16 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
pipeline parallel size = 2.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# update config pipeline parallel size
|
||||
command = f"sed -i 's/^.*pipeline=.*/ pipeline=dict(size=2),/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*tensor=.*/ tensor=1,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP
|
||||
def test_loss_spike_with_dp8_pp2():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP
|
||||
def test_loss_accuracy_with_dp8_pp2():
|
||||
check_loss_accuracy()
|
||||
|
||||
|
||||
class TestCaseTrain16GPUWith8DP2PPInterleaved:
|
||||
"""
|
||||
Test cases for Model Training with 16 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
pipeline parallel size = 2.
|
||||
interleaved scheduler = True.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# update config pipeline parallel size
|
||||
command = f"sed -i 's/^.*pipeline=.*/ pipeline=dict(size=2),/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*num_chunks=.*/ num_chunks=2,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*tensor=.*/ tensor=1,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=False)
|
||||
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP_Interleaved
|
||||
def test_loss_spike_with_dp8_pp2_interleaved():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP_Interleaved
|
||||
def test_loss_accuracy_with_dp8_pp2_interleaved():
|
||||
check_loss_accuracy()
|
||||
|
||||
|
||||
class TestCaseTrain16GPUWith8DP2PPInterleavedOverlap:
|
||||
"""
|
||||
Test cases for Model Training with 16 GPUs.
|
||||
Parallel Config:
|
||||
data parallel size = 8.
|
||||
pipeline parallel size = 2.
|
||||
interleaved scheduler = True.
|
||||
interleaved overlap = True.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def setup_class():
|
||||
# update config pipeline parallel size
|
||||
command = f"sed -i 's/^.*pipeline=.*/ pipeline=dict(size=2, interleaved_overlap=True),/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*num_chunks=.*/ num_chunks=2,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
command = f"sed -i 's/^.*tensor=.*/ tensor=1,/' {CONFIG_FILE_PATH}"
|
||||
subprocess.run(command, shell=True, check=True)
|
||||
|
||||
# model training
|
||||
train()
|
||||
|
||||
# print loss value
|
||||
print(f"cur_loss_list: {cur_loss_list}", flush=True)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP_InterleavedOverlap
|
||||
def test_loss_spike_with_dp8_pp2_interleaved_overlap():
|
||||
check_loss_spike()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.training_16GPU_8DP2PP_InterleavedOverlap
|
||||
def test_loss_accuracy_with_dp8_pp2_interleaved_overlap():
|
||||
check_loss_accuracy()
|
|
@ -109,3 +109,29 @@ InternLM 在 GSM8K 数据集中带工具和不带工具的性能表现:
|
|||
| -------- | -------------------- |
|
||||
| w/o tool | 34.5 |
|
||||
| w tool | 39.2 |
|
||||
|
||||
# openai_api.py
|
||||
|
||||
使用 OpenAI 接口实现的流式部署,可以应用于基于 ChatGPT 的应用的后端。部署的命令为:
|
||||
|
||||
```bash
|
||||
python openai_api.py
|
||||
```
|
||||
|
||||
然后可以通过下面代码调用部署好的 api:
|
||||
|
||||
```python
|
||||
import openai
|
||||
if __name__ == "__main__":
|
||||
openai.api_base = "http://localhost:8000/internlm"
|
||||
openai.api_key = "none"
|
||||
for chunk in openai.ChatCompletion.create(
|
||||
model="internlm-chat-7b",
|
||||
messages=[
|
||||
{"role": "user", "content": "你好"},
|
||||
],
|
||||
stream=True
|
||||
):
|
||||
if hasattr(chunk.choices[0].delta, "content"):
|
||||
print(chunk.choices[0].delta.content, end="", flush=True)
|
||||
```
|
|
@ -107,3 +107,29 @@ InternLM performance in the GSM8K dataset with and without tools:
|
|||
| -------- | -------------------- |
|
||||
| w/o tool | 34.5 |
|
||||
| w tool | 39.2 |
|
||||
|
||||
# openai_api.py
|
||||
|
||||
`openai_api.py` implements stream deployment with OpenAI APIs which an be used on any applications based on ChatGPT. Below is the command to deploy `internlm`:
|
||||
|
||||
```bash
|
||||
python openai_api.py
|
||||
```
|
||||
|
||||
Then it is able to call the deployed API using the following python code:
|
||||
|
||||
```python
|
||||
import openai
|
||||
if __name__ == "__main__":
|
||||
openai.api_base = "http://localhost:8000/internlm"
|
||||
openai.api_key = "none"
|
||||
for chunk in openai.ChatCompletion.create(
|
||||
model="internlm-chat-7b",
|
||||
messages=[
|
||||
{"role": "user", "content": "Hello!"},
|
||||
],
|
||||
stream=True
|
||||
):
|
||||
if hasattr(chunk.choices[0].delta, "content"):
|
||||
print(chunk.choices[0].delta.content, end="", flush=True)
|
||||
```
|
||||
|
|
|
@ -0,0 +1,157 @@
|
|||
import time
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel, Field
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
class ModelCard(BaseModel):
|
||||
id: str
|
||||
object: str = "model"
|
||||
created: int = Field(default_factory=lambda: int(time.time()))
|
||||
owned_by: str = "owner"
|
||||
root: Optional[str] = None
|
||||
parent: Optional[str] = None
|
||||
permission: Optional[list] = None
|
||||
|
||||
|
||||
class ModelList(BaseModel):
|
||||
object: str = "list"
|
||||
data: List[ModelCard] = []
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Literal["user", "assistant", "system"]
|
||||
content: str
|
||||
|
||||
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_length: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[Literal["stop", "length"]]
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
model: str
|
||||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||
|
||||
|
||||
@app.get("/internlm/models", response_model=ModelList)
|
||||
async def list_models():
|
||||
model_card = ModelCard(id="internlm")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
|
||||
@app.post("/internlm/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
global model, tokenizer
|
||||
|
||||
if request.messages[-1].role != "user":
|
||||
raise HTTPException(status_code=400, detail="Invalid request")
|
||||
query = request.messages[-1].content
|
||||
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
query = prev_messages.pop(0).content + query
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
for i in range(0, len(prev_messages), 2):
|
||||
if prev_messages[i].role == "user" and prev_messages[i + 1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i + 1].content])
|
||||
|
||||
if request.stream:
|
||||
generate = predict(query, history, request.model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
response, _ = model.chat(tokenizer, query, history=history)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop"
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||||
global model, tokenizer
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage(role="assistant"), finish_reason=None)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
current_length = 0
|
||||
|
||||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||||
if len(new_response) == current_length:
|
||||
continue
|
||||
|
||||
new_text = new_response[current_length:]
|
||||
|
||||
current_length = len(new_response)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage(), finish_reason="stop")
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield "[DONE]"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = "internlm/internlm-chat-7b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
||||
model.eval()
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
|
|
@ -869,7 +869,7 @@ class InternLMForCausalLM(InternLMPreTrainedModel):
|
|||
producer.start()
|
||||
while True:
|
||||
res = response_queue.get()
|
||||
if res is not None:
|
||||
if res is None:
|
||||
return
|
||||
yield res
|
||||
|
||||
|
|
Loading…
Reference in New Issue