support pipeline convert

pull/544/head
Wenwen Qu 2023-12-18 11:25:30 +08:00
parent 934f60b753
commit b5ce6825ce
1 changed files with 68 additions and 59 deletions

View File

@ -6,7 +6,7 @@ from tqdm import tqdm
from transformers import AutoConfig
def revert(src, tgt, tp_size, embed_split_hidden, adapt_hf, use_flash):
def revert(src, tgt, tp_size, pp_size, embed_split_hidden, adapt_hf, use_flash):
hf_state = {}
print("Loading HF checkpoints...")
for filename in tqdm(os.listdir(src)):
@ -33,75 +33,81 @@ def revert(src, tgt, tp_size, embed_split_hidden, adapt_hf, use_flash):
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2)
# revert
states = [{} for _ in range(tp_size)]
# no-moe is stored according to tp and pp ranks
states = [[{} for _ in range(tp_size)] for _ in range(pp_size)]
# moe is stored according to layer id, expert id and tp rank
moe_states = [
[[{} for _ in range(tp_size)] for _ in range(config.num_experts)] for _ in range(config.num_hidden_layers)
]
# layers
for layer_i in tqdm(range(config.num_hidden_layers)):
# no-moe
for i in range(tp_size):
states[i][f"model.layers.{layer_i}.attention_norm.weight"] = hf_state[
f"model.layers.{layer_i}.input_layernorm.weight"
].clone()
states[i][f"model.layers.{layer_i}.ffn_norm.weight"] = hf_state[
f"model.layers.{layer_i}.post_attention_layernorm.weight"
].clone()
states[i][f"model.layers.{layer_i}.feed_forward.moe_layer.gate.wg.weight"] = hf_state[
f"model.layers.{layer_i}.mlp.gate.weight"
].clone()
# mha
wqs = (
permute(hf_state[f"model.layers.{layer_i}.self_attn.q_proj.weight"])
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wks = (
permute(hf_state[f"model.layers.{layer_i}.self_attn.k_proj.weight"], n_kv_heads, -1, dim)
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wvs = (
hf_state[f"model.layers.{layer_i}.self_attn.v_proj.weight"]
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wos = hf_state[f"model.layers.{layer_i}.self_attn.o_proj.weight"].chunk(tp_size, 1)
for i in range(tp_size):
states[i][f"model.layers.{layer_i}.attention.wq.weight"] = wqs[i].reshape(-1, dim).clone()
states[i][f"model.layers.{layer_i}.attention.wk.weight"] = wks[i].reshape(-1, dim).clone()
states[i][f"model.layers.{layer_i}.attention.wv.weight"] = wvs[i].reshape(-1, dim).clone()
states[i][f"model.layers.{layer_i}.attention.wo.weight"] = wos[i].clone()
# moe
for expert_id in range(config.num_experts):
w1s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w1.weight"].chunk(tp_size, 0)
w2s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w3.weight"].chunk(tp_size, 0)
w3s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w2.weight"].chunk(tp_size, 1)
assert config.num_hidden_layers % pp_size == 0
num_layer_per_stage = config.num_hidden_layers // pp_size
for p_i in range(pp_size):
for layer_i in tqdm(range(num_layer_per_stage)):
# no-moe
for i in range(tp_size):
moe_states[layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w1.weight"
] = w1s[i].clone()
moe_states[layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w2.weight"
] = w2s[i].clone()
moe_states[layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w3.weight"
] = w3s[i].clone()
states[p_i][i][f"model.layers.{layer_i}.attention_norm.weight"] = hf_state[
f"model.layers.{layer_i}.input_layernorm.weight"
].clone()
states[p_i][i][f"model.layers.{layer_i}.ffn_norm.weight"] = hf_state[
f"model.layers.{layer_i}.post_attention_layernorm.weight"
].clone()
states[p_i][i][f"model.layers.{layer_i}.feed_forward.moe_layer.gate.wg.weight"] = hf_state[
f"model.layers.{layer_i}.mlp.gate.weight"
].clone()
# mha
wqs = (
permute(hf_state[f"model.layers.{layer_i}.self_attn.q_proj.weight"])
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wks = (
permute(hf_state[f"model.layers.{layer_i}.self_attn.k_proj.weight"], n_kv_heads, -1, dim)
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wvs = (
hf_state[f"model.layers.{layer_i}.self_attn.v_proj.weight"]
# .view(-1, dims_per_head, dim)
.chunk(tp_size, 0)
)
wos = hf_state[f"model.layers.{layer_i}.self_attn.o_proj.weight"].chunk(tp_size, 1)
for i in range(tp_size):
states[p_i][i][f"model.layers.{layer_i}.attention.wq.weight"] = wqs[i].reshape(-1, dim).clone()
states[p_i][i][f"model.layers.{layer_i}.attention.wk.weight"] = wks[i].reshape(-1, dim).clone()
states[p_i][i][f"model.layers.{layer_i}.attention.wv.weight"] = wvs[i].reshape(-1, dim).clone()
states[p_i][i][f"model.layers.{layer_i}.attention.wo.weight"] = wos[i].clone()
# moe
global_layer_i = p_i * num_layer_per_stage + layer_i
for expert_id in range(config.num_experts):
w1s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w1.weight"].chunk(tp_size, 0)
w2s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w3.weight"].chunk(tp_size, 0)
w3s = hf_state[f"model.layers.{layer_i}.mlp.experts.{expert_id}.w2.weight"].chunk(tp_size, 1)
for i in range(tp_size):
moe_states[global_layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w1.weight"
] = w1s[i].clone()
moe_states[global_layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w2.weight"
] = w2s[i].clone()
moe_states[global_layer_i][expert_id][i][
f"model.layers.{layer_i}.feed_forward.moe_layer.experts.experts.{expert_id}.w3.weight"
] = w3s[i].clone()
for i in range(tp_size):
if embed_split_hidden:
embeds = hf_state["model.embed_tokens.weight"].chunk(tp_size, 1)
states[i]["model.tok_embeddings.weight"] = embeds[i].clone()
states[0][i]["model.tok_embeddings.weight"] = embeds[i].clone()
else:
embeds = hf_state["model.embed_tokens.weight"].chunk(tp_size, 0)
states[i]["model.tok_embeddings.word_embeddings.weight"] = embeds[i].clone()
states[0][i]["model.tok_embeddings.word_embeddings.weight"] = embeds[i].clone()
outputs = hf_state["lm_head.weight"].chunk(tp_size, 0)
for i in range(tp_size):
states[i]["model.norm.weight"] = hf_state["model.norm.weight"].clone()
states[i]["model.output.weight"] = outputs[i].clone()
states[pp_size - 1][i]["model.norm.weight"] = hf_state["model.norm.weight"].clone()
states[pp_size - 1][i]["model.output.weight"] = outputs[i].clone()
mlp_ratio = round((config.intermediate_size - 255) / config.hidden_size + 0.01, 2)
if "rotary" in config.to_dict():
@ -134,8 +140,9 @@ def revert(src, tgt, tp_size, embed_split_hidden, adapt_hf, use_flash):
# save
os.makedirs(tgt, exist_ok=True)
print(f"Saving to {tgt}...")
for tp in tqdm(range(tp_size)):
torch.save(states[tp], os.path.join(tgt, f"model_tp{tp}_pp0.pt"))
for pp in range(pp_size):
for tp in tqdm(range(tp_size)):
torch.save(states[pp][tp], os.path.join(tgt, f"model_tp{tp}_pp{pp}.pt"))
for moe_layer_id in range(config.num_hidden_layers):
for expert_id in range(config.num_experts):
for tp in tqdm(range(tp_size)):
@ -151,6 +158,7 @@ def print_args(args):
print(f"Source Path: {args.src}")
print(f"Target Path: {args.tgt}")
print(f"TP Size: {args.tp_size}")
print(f"PP Size: {args.pp_size}")
print(f"Embeb Split Hidden: {args.embed_split}")
print(f"Adapt HF: {args.adapt_hf}")
print(f"Use Flash Attn: {args.use_flash}")
@ -163,6 +171,7 @@ def parse_args():
parser.add_argument("--src", type=str, help="Input folder")
parser.add_argument("--tgt", type=str, help="Output folder")
parser.add_argument("--tp_size", type=int, help="world_size of tensor parallel")
parser.add_argument("--pp_size", type=int, help="world_size of pipeline parallel")
parser.add_argument("--embed_split", action="store_true", help="embed_split_hidden of InternLM")
parser.add_argument("--adapt_hf", action="store_true", help="adapt_hf of InternLM")
parser.add_argument("--use_flash", action="store_true", help="use_flash_attn of InternLM")
@ -178,4 +187,4 @@ if __name__ == "__main__":
args = parse_args()
print_args(args)
revert(args.src, args.tgt, args.tp_size, args.embed_split, args.adapt_hf, args.use_flash)
revert(args.src, args.tgt, args.tp_size, args.pp_size, args.embed_split, args.adapt_hf, args.use_flash)