mirror of https://github.com/InternLM/InternLM
Add a figure to show the relation of different models (#638)
parent
4fd9391594
commit
b00e875ed5
14
README.md
14
README.md
|
@ -64,14 +64,16 @@ InternLM2 series are released with the following features:
|
||||||
| **InternLM2-Chat-20B-SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
| **InternLM2-Chat-20B-SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
||||||
| **InternLM2-Chat-20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
| **InternLM2-Chat-20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
||||||
|
|
||||||
**Note of Models:**
|
**Notes:**
|
||||||
|
|
||||||
The release of InternLM2 series contains two model sizes: 7B and 20B. 7B models are efficient for research and application and 20B models are more powerful and can support more complex scenarios. For each model size, there are four types of models for different user requirements
|
The release of InternLM2 series contains two model sizes: 7B and 20B. 7B models are efficient for research and application and 20B models are more powerful and can support more complex scenarios. The relation of these models are shown as follows.
|
||||||
|
|
||||||
1. InternLM2-Base: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
|
![](https://internlm.oss-cn-shanghai.aliyuncs.com/series.png)
|
||||||
2. InternLM2: Further pretrain with general domain data and domain-enhanced corpus, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2 models are recommended for consideration in most applications.
|
|
||||||
3. InternLM2-Chat-SFT: Intermediate version of InternLM2-Chat that only undergoes supervised fine-tuning (SFT), based on the InternLM2-Base model. We release them to benefit research on alignment.
|
1. **InternLM2-Base**: Foundation models with high quality and high adaptation flexibility, which serve as a good starting point for downstream deep adaptations.
|
||||||
4. InternLM2-Chat: Further aligned on top of InternLM2-Chat-SFT through online RLHF. InternLM2-Chat exhibits better instruction following, chat experience, and function call, which is recommended for downstream applications.
|
2. **InternLM2**: Further pretrain with general domain data and domain-enhanced corpus, obtaining state-of-the-art performance in evaluation with good language capability. InternLM2 models are recommended for consideration in most applications.
|
||||||
|
3. **InternLM2-Chat-SFT**: Intermediate version of InternLM2-Chat that only undergoes supervised fine-tuning (SFT), based on the InternLM2-Base model. We release them to benefit research on alignment.
|
||||||
|
4. **InternLM2-Chat**: Further aligned on top of InternLM2-Chat-SFT through online RLHF. InternLM2-Chat exhibits better instruction following, chat experience, and function call, which is recommended for downstream applications.
|
||||||
|
|
||||||
**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
|
||||||
|
|
||||||
|
|
|
@ -62,14 +62,16 @@ InternLM2 系列模型在本仓库正式发布,具有如下特性:
|
||||||
| **InternLM2-Chat-20B-SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
| **InternLM2-Chat-20B-SFT** | [🤗internlm/internlm2-chat-20b-sft](https://huggingface.co/internlm/internlm2-chat-20b-sft) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b-sft](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b-sft/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b-sft) | 2024-01-17 |
|
||||||
| **InternLM2-Chat-20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
| **InternLM2-Chat-20B** | [🤗internlm/internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [<img src="./assets/modelscope_logo.png" width="20px" /> internlm2-chat-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-20b/summary) | [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/internlm2-chat-20b) | 2024-01-17 |
|
||||||
|
|
||||||
**关于模型说明:**
|
**模型说明:**
|
||||||
|
|
||||||
在此次发布中,InternLM2 包含两种模型规格:7B 和 20B。7B 为轻量级的研究和应用提供了一个轻便但性能不俗的模型,20B 模型的综合性能更为强劲,可以有效支持更加复杂的实用场景。面向不同的使用需求,每个规格包含四个模型版本:
|
在此次发布中,InternLM2 包含两种模型规格:7B 和 20B。7B 为轻量级的研究和应用提供了一个轻便但性能不俗的模型,20B 模型的综合性能更为强劲,可以有效支持更加复杂的实用场景。每个规格不同模型关系如下图所示:
|
||||||
|
|
||||||
1. InternLM2-Base:高质量和具有很强可塑性的模型基座,是模型进行深度领域适配的高质量起点。
|
![](https://internlm.oss-cn-shanghai.aliyuncs.com/series.png)
|
||||||
2. InternLM2:进一步在大规模无标签数据上进行预训练,并结合特定领域的增强语料库进行训练,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座。
|
|
||||||
3. InternLM2-Chat-SFT: 基于 InternLM2-Base 模型进行了有监督微调,是 InternLM2-Chat 模型的中间版本。我们将它们开源以助力社区在对齐方面的研究。
|
1. **InternLM2-Base**:高质量和具有很强可塑性的模型基座,是模型进行深度领域适配的高质量起点。
|
||||||
4. InternLM2-Chat: 在 InternLM2-Chat-SFT 的基础上进行了 online RLHF 以进一步对齐. InternLM2-Chat 面向对话交互进行了优化,具有较好的指令遵循、共情聊天和调用工具等的能力,是我们推荐直接用于下游应用的模型。
|
2. **InternLM2**:进一步在大规模无标签数据上进行预训练,并结合特定领域的增强语料库进行训练,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座。
|
||||||
|
3. **InternLM2-Chat-SFT**: 基于 InternLM2-Base 模型进行了有监督微调,是 InternLM2-Chat 模型的中间版本。我们将它们开源以助力社区在对齐方面的研究。
|
||||||
|
4. **InternLM2-Chat**: 在 InternLM2-Chat-SFT 的基础上进行了 online RLHF 以进一步对齐. InternLM2-Chat 面向对话交互进行了优化,具有较好的指令遵循、共情聊天和调用工具等的能力,是我们推荐直接用于下游应用的模型。
|
||||||
|
|
||||||
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue