diff --git a/README.md b/README.md index 64e3769..8a2606c 100644 --- a/README.md +++ b/README.md @@ -152,6 +152,10 @@ model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-7b') tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True) # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error. model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16) +# (Optional) If on low resource devices, you can load model in 4bits or 8 bits to further save GPU memory. InternLM 7B in 4bit will cost nearly 8GB GPU memory. + # pip install -U bitsandbytes + # 8bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True) + # 4bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True) model = model.eval() response, history = model.chat(tokenizer, "hello", history=[]) print(response)