refactor code for split param group

pull/182/head
Wenwen Qu 2023-09-22 15:24:28 +08:00
parent 3df0a51555
commit a5e80bcc56
1 changed files with 24 additions and 35 deletions

View File

@ -1,6 +1,9 @@
from typing import Dict, Tuple
import torch
from internlm.core.context.parallel_context import global_context as gpc
from internlm.model.utils import is_gate_param, is_moe_param, is_norm_param
def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict]) -> Tuple[Dict]:
@ -27,18 +30,6 @@ def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict])
>>> )
"""
def _get_group(param):
group_keys = ["is_expert", "is_gate", "is_norm"]
for i, key in enumerate(group_keys):
if hasattr(param, key) and getattr(param, key):
# experts param should return its group name
if i == 0:
return param.group_name
else:
return key[3:]
# TODO: deal with fp32 group
return None
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
@ -46,44 +37,42 @@ def split_params_into_different_groups_for_optimizer(param_groups: Tuple[Dict])
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
new_groups = []
# create new groups for fp32, norm, moe gate and moe expert
new_groups = {}
new_groups["fp32"] = {"name": "fp32", "params": []}
for key in ["gate", "norm"]:
new_groups[key] = {"name": key, "sync_tp": True, "params": []}
for key in gpc.expert_parallel_group_names:
new_groups[key] = {"name": key, "moe": True, "params": []}
for pgroup in param_groups:
current_groups = {}
# create new groups for gate and norm
for key in ["gate", "norm"]:
current_groups[key] = {"name": key, key: True, "params": []}
# create moe groups
for key in gpc.expert_parallel_group_names:
current_groups[key] = {"name": key, "moe": True, "params": []}
# copy attribute from origin group
for ori_key in pgroup.keys():
if ori_key not in ("name", "params"):
for _, group in current_groups.items():
for _, group in new_groups.items():
group[ori_key] = pgroup[ori_key]
# Assign param
# assign param
origin_params = []
# first split the norm and gate groups, then the fp32 group, finally moe group
for param in pgroup["params"]:
group = _get_group(param)
if group is not None:
current_groups[group]["params"].append(param)
if is_norm_param(param):
new_groups["norm"]["params"].append(param)
elif is_gate_param(param):
new_groups["gate"]["params"].append(param)
elif param.dtype == torch.float32:
new_groups["fp32"]["params"].append(param)
elif is_moe_param(param):
new_groups[param.group_name]["params"].append(param)
else:
origin_params.append(param)
# bf16 param group, which is the first group in the param groups
pgroup["params"] = origin_params
new_groups.append(current_groups)
for g in new_groups:
for _, v in g.items():
param_groups.append(v)
param_groups.extend(new_groups.values())
return tuple(param_groups)
def create_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_groups_for_optimizer(parameters)