rename vars (#468)

pull/486/head
jiaopenglong 2023-11-09 20:04:35 +08:00 committed by GitHub
parent 0763bf3972
commit a435980e0c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 7 additions and 7 deletions

View File

@ -633,10 +633,10 @@ class HybridZeroOptimizer(BaseOptimizer):
# compute norm for gradients in the last bucket
total_norms = {}
total_param_norms = {}
total_param_grad_norms = {}
total_layer_grad_norms = {}
total_param_zero_grad_count = {}
total_layer_zero_grad_count = {}
total_layer_norms = {}
for group_id in range(self.num_param_groups):
group_name = self.param_groups[group_id]["name"] if "name" in self.param_groups[group_id] else "default"
group_name = f"{group_id}_{group_name}"
@ -653,7 +653,7 @@ class HybridZeroOptimizer(BaseOptimizer):
last_stage=True,
previous_param_norms=groups_param_norms[group_id],
)
total_layer_norms[group_name], total_param_norms[group_name] = compute_layer_norm(
total_layer_grad_norms[group_name], total_param_grad_norms[group_name] = compute_layer_norm(
param_norms=param_norms, loss_scale=self.loss_scale.item()
)
if grad_profiling_config.get("zero_grad_profiling", False):
@ -674,8 +674,8 @@ class HybridZeroOptimizer(BaseOptimizer):
state, global_norms = self._step(closure=closure, norms=total_norms)
if grad_profiling_config.get("grad_norm_profiling", False):
global_norms["layer_norm"] = total_layer_norms
global_norms["param_norm"] = total_param_norms
global_norms["layer_grad_norm"] = total_layer_grad_norms
global_norms["param_grad_norm"] = total_param_grad_norms
if grad_profiling_config.get("zero_grad_profiling", False):
global_norms["layer_zero_grad"] = total_layer_zero_grad_count
global_norms["param_zero_grad"] = total_param_zero_grad_count

View File

@ -533,8 +533,8 @@ def record_current_batch_training_metrics(
if grad_profiling_config.get("grad_norm_profiling", False) or grad_profiling_config.get(
"zero_grad_profiling", False
):
layer_metrics = ["layer_norm", "layer_zero_grad"]
param_metrics = ["param_norm", "param_zero_grad"]
layer_metrics = ["layer_grad_norm", "layer_zero_grad"]
param_metrics = ["param_grad_norm", "param_zero_grad"]
layer_names = grad_profiling_config.get("layers", [])
for layer_metric_name in layer_metrics:
layer_metric = grad_norm.get(layer_metric_name, {})