mirror of https://github.com/InternLM/InternLM
Merge pull request #1 from pppppM/eco-train
[Docs] Add Llama-Factory and Swift examplespull/745/head
commit
a226283898
|
@ -24,10 +24,24 @@ You can find the best practice of finetuing the internlm2 model in the [README](
|
|||
|
||||
LLaMA-Factory is an open-source, easy-to-use fine-tuning and training framework for LLMs
|
||||
|
||||
```bash
|
||||
llamafactory-cli train \
|
||||
--model_name_or_path internlm/internlm2-chat-1_8b \
|
||||
--quantization_bit 4 --stage sft --lora_target all \
|
||||
--dataset 'identity,alpaca_en_demo' --template intern2 \
|
||||
--output_dir output --do_train
|
||||
```
|
||||
|
||||
### [swift](https://github.com/modelscope/swift)
|
||||
|
||||
SWIFT supports training, inference, evaluation and deployment of LLMs and MLLMs (multimodal large models).
|
||||
|
||||
```bash
|
||||
swift sft --model_type internlm2-1_8b-chat \
|
||||
--model_id_or_path Shanghai_AI_Laboratory/internlm2-chat-1_8b \
|
||||
--dataset AI-ModelScope/blossom-math-v2 --output_dir output
|
||||
```
|
||||
|
||||
## Inference
|
||||
|
||||
### [LMDeploy](https://github.com/InternLM/lmdeploy)
|
||||
|
|
|
@ -24,8 +24,22 @@ XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。
|
|||
|
||||
LLaMA-Factory 是一个开源的、易于使用的 LLMs 微调和训练框架。
|
||||
|
||||
```bash
|
||||
llamafactory-cli train \
|
||||
--model_name_or_path internlm/internlm2-chat-1_8b \
|
||||
--quantization_bit 4 --stage sft --lora_target all \
|
||||
--dataset 'identity,alpaca_en_demo' --template intern2 \
|
||||
--output_dir output --do_train
|
||||
```
|
||||
|
||||
### [swift](https://github.com/modelscope/swift)
|
||||
|
||||
```bash
|
||||
swift sft --model_type internlm2-1_8b-chat \
|
||||
--model_id_or_path Shanghai_AI_Laboratory/internlm2-chat-1_8b \
|
||||
--dataset AI-ModelScope/blossom-math-v2 --output_dir output
|
||||
```
|
||||
|
||||
SWIFT 支持 LLMs 和多模态大型模型(MLLMs)的训练、推理、评估和部署。
|
||||
|
||||
## 推理
|
||||
|
|
Loading…
Reference in New Issue