mirror of https://github.com/InternLM/InternLM
add more model case into daily test
parent
ae8068a2f9
commit
a07c5443fc
|
@ -1,6 +1,8 @@
|
|||
import pytest
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from auto_gptq.modeling import BaseGPTQForCausalLM
|
||||
from PIL import Image
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
prompts = ['你好', "what's your name"]
|
||||
|
||||
|
@ -16,8 +18,8 @@ class TestChat:
|
|||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'internlm/internlm2-chat-7b',
|
||||
'internlm/internlm2-chat-7b-sft',
|
||||
'internlm/internlm2-chat-7b', 'internlm/internlm2-chat-7b-sft',
|
||||
'internlm/internlm2-chat-1_8b', 'internlm/internlm2-chat-1_8b-sft'
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
|
@ -29,11 +31,13 @@ class TestChat:
|
|||
model_name, torch_dtype=torch.float16,
|
||||
trust_remote_code=True).cuda()
|
||||
model = model.eval()
|
||||
history = []
|
||||
for prompt in prompts:
|
||||
response, history = model.chat(tokenizer, prompt, history=[])
|
||||
response, history = model.chat(tokenizer, prompt, history=history)
|
||||
print(response)
|
||||
assert_model(response)
|
||||
|
||||
history = []
|
||||
for prompt in prompts:
|
||||
length = 0
|
||||
for response, history in model.stream_chat(tokenizer,
|
||||
|
@ -50,8 +54,8 @@ class TestBase:
|
|||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'internlm/internlm2-7b',
|
||||
'internlm/internlm2-base-7b',
|
||||
'internlm/internlm2-7b', 'internlm/internlm2-base-7b',
|
||||
'internlm/internlm2-1_8b'
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
|
@ -78,3 +82,149 @@ class TestBase:
|
|||
skip_special_tokens=True)
|
||||
print(output)
|
||||
assert_model(output)
|
||||
|
||||
|
||||
class TestMath:
|
||||
"""Test cases for base model."""
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
['internlm/internlm2-math-7b', 'internlm/internlm2-math-base-7b'],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
||||
# it will be loaded as float32 and might cause OOM Error.
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, trust_remote_code=True,
|
||||
torch_dtype=torch.float16).cuda()
|
||||
model = model.eval()
|
||||
model = model.eval()
|
||||
response, history = model.chat(tokenizer,
|
||||
'1+1=',
|
||||
history=[],
|
||||
meta_instruction='')
|
||||
print(response)
|
||||
assert_model(response)
|
||||
|
||||
|
||||
class TestMMModel:
|
||||
"""Test cases for base model."""
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'internlm/internlm-xcomposer2-7b',
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
|
||||
# it will be loaded as float32 and might cause OOM Error.
|
||||
if '4bit' in model_name:
|
||||
model = InternLMXComposer2QForCausalLM.from_quantized(
|
||||
model_name, trust_remote_code=True, device='cuda:0').eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=torch.float16,
|
||||
trust_remote_code=True).cuda()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
|
||||
model = model.eval()
|
||||
img_path_list = [
|
||||
'tests/panda.jpg',
|
||||
'tests/bamboo.jpeg',
|
||||
]
|
||||
images = []
|
||||
for img_path in img_path_list:
|
||||
image = Image.open(img_path).convert('RGB')
|
||||
image = model.vis_processor(image)
|
||||
images.append(image)
|
||||
image = torch.stack(images)
|
||||
query = '<ImageHere> <ImageHere>please write an article ' \
|
||||
+ 'based on the images. Title: my favorite animal.'
|
||||
with torch.cuda.amp.autocast():
|
||||
response, history = model.chat(tokenizer,
|
||||
query=query,
|
||||
image=image,
|
||||
history=[],
|
||||
do_sample=False)
|
||||
print(response)
|
||||
assert len(response) != 0
|
||||
assert 'panda' in response
|
||||
|
||||
query = '<ImageHere> <ImageHere>请根据图片写一篇作文:我最喜欢的小动物。' \
|
||||
+ '要求:选准角度,确定立意,明确文体,自拟标题。'
|
||||
with torch.cuda.amp.autocast():
|
||||
response, history = model.chat(tokenizer,
|
||||
query=query,
|
||||
image=image,
|
||||
history=[],
|
||||
do_sample=False)
|
||||
print(response)
|
||||
assert len(response) != 0
|
||||
assert '熊猫' in response
|
||||
|
||||
|
||||
class TestMMVlModel:
|
||||
"""Test cases for base model."""
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'model_name',
|
||||
[
|
||||
'internlm/internlm-xcomposer2-vl-7b',
|
||||
'internlm/internlm-xcomposer2-vl-7b-4bit'
|
||||
],
|
||||
)
|
||||
def test_demo_default(self, model_name):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
# init model and tokenizer
|
||||
if '4bit' in model_name:
|
||||
model = InternLMXComposer2QForCausalLM.from_quantized(
|
||||
model_name, trust_remote_code=True, device='cuda:0').eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModel.from_pretrained(
|
||||
model_name, trust_remote_code=True).cuda().eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
|
||||
query = '<ImageHere>Please describe this image in detail.'
|
||||
image = 'tests/image.webp'
|
||||
with torch.cuda.amp.autocast():
|
||||
response, _ = model.chat(tokenizer,
|
||||
query=query,
|
||||
image=image,
|
||||
history=[],
|
||||
do_sample=False)
|
||||
print(response)
|
||||
assert len(response) != 0
|
||||
assert 'Oscar Wilde' in response
|
||||
assert 'Live life with no excuses, travel with no regret' in response
|
||||
|
||||
|
||||
class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM):
|
||||
layers_block_name = 'model.layers'
|
||||
outside_layer_modules = [
|
||||
'vit',
|
||||
'vision_proj',
|
||||
'model.tok_embeddings',
|
||||
'model.norm',
|
||||
'output',
|
||||
]
|
||||
inside_layer_modules = [
|
||||
['attention.wqkv.linear'],
|
||||
['attention.wo.linear'],
|
||||
['feed_forward.w1.linear', 'feed_forward.w3.linear'],
|
||||
['feed_forward.w2.linear'],
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue