mirror of https://github.com/InternLM/InternLM
fix moe bugs in zero optimizer
parent
3bfaad895a
commit
9ee57e6c8a
|
@ -166,10 +166,6 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
# partition these param groups for data parallel training
|
||||
# and add buffers to parameter store for future access
|
||||
for group_id, param_group in enumerate(self.optim.param_groups):
|
||||
if "moe" in param_group.keys() and param_group["moe"]:
|
||||
print("true", flush=True)
|
||||
continue
|
||||
|
||||
group_params = param_group["params"]
|
||||
|
||||
# add the fp16 params to fp16_param_groups for bookkeeping
|
||||
|
@ -180,7 +176,10 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
self.param_group_no_params_ranks.append(no_params_ranks)
|
||||
self.param_group_has_params.append(self._zero_local_rank not in no_params_ranks)
|
||||
|
||||
# store the mapping between param to rank each param should belong to only one rank
|
||||
# store the mapping between param to rank each param should belong to only one rank.
|
||||
# we can skip the moe param and do not keep them in _param_store to save memory
|
||||
# (means we need to deal with moe param in a different way), but it will increase
|
||||
# complexity and reduce code readablity.
|
||||
for rank, params in enumerate(params_per_rank):
|
||||
# check whether any rank is not assigned params.
|
||||
if len(params) != 0:
|
||||
|
@ -267,26 +266,34 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
numel_per_rank = [0 for _ in range(self._zero_world_size)]
|
||||
self.params_per_rank_id_dict.append([[] for _ in range(self._zero_world_size)])
|
||||
|
||||
sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True)
|
||||
for i, param in enumerate(sorted_params):
|
||||
global_id = str(i)
|
||||
for j in range(len(param.size())):
|
||||
global_id = "_".join([global_id, str(param.size()[j])])
|
||||
if "moe" in param_list.keys() and param_list["moe"]:
|
||||
# just add current params to params_per_rank[_zero_local_rank]
|
||||
params_per_rank[self._zero_local_rank] = list(param_list["params"])
|
||||
self.params_per_rank_id_dict[-1][self._zero_local_rank].append(None)
|
||||
no_params_ranks = list(range(self._zero_world_size))
|
||||
no_params_ranks.pop(self._zero_world_size)
|
||||
|
||||
rank_to_go = numel_per_rank.index(min(numel_per_rank))
|
||||
params_per_rank[rank_to_go].append(param)
|
||||
self.params_per_rank_id_dict[-1][rank_to_go].append(global_id)
|
||||
numel_per_rank[rank_to_go] += param.numel()
|
||||
else:
|
||||
sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True)
|
||||
for i, param in enumerate(sorted_params):
|
||||
global_id = str(i)
|
||||
for j in range(len(param.size())):
|
||||
global_id = "_".join([global_id, str(param.size()[j])])
|
||||
|
||||
# check whether any rank is not assigned to parameters.
|
||||
for rank, params in enumerate(params_per_rank):
|
||||
if len(params) == 0:
|
||||
no_params_ranks.append(rank)
|
||||
rank_to_go = numel_per_rank.index(min(numel_per_rank))
|
||||
params_per_rank[rank_to_go].append(param)
|
||||
self.params_per_rank_id_dict[-1][rank_to_go].append(global_id)
|
||||
numel_per_rank[rank_to_go] += param.numel()
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
logger.info( # pylint: disable=W1203
|
||||
f"Number of elements on ranks: {numel_per_rank}, rank:{gpc.get_global_rank()}"
|
||||
)
|
||||
# check whether any rank is not assigned to parameters.
|
||||
for rank, params in enumerate(params_per_rank):
|
||||
if len(params) == 0:
|
||||
no_params_ranks.append(rank)
|
||||
|
||||
if gpc.is_rank_for_log():
|
||||
logger.info( # pylint: disable=W1203
|
||||
f"Number of elements on ranks: {numel_per_rank}, rank:{gpc.get_global_rank()}"
|
||||
)
|
||||
|
||||
return params_per_rank, set(no_params_ranks)
|
||||
|
||||
|
@ -296,6 +303,7 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
for group_id in range(self.num_param_groups):
|
||||
param_group = self._fp16_param_groups[group_id]
|
||||
for param in param_group:
|
||||
# we should not reduce the param in moe
|
||||
if param.requires_grad and not is_moe_param(param):
|
||||
reduce_rank = None
|
||||
|
||||
|
@ -496,6 +504,7 @@ class HybridZeroOptimizer(BaseOptimizer):
|
|||
if not self._overlap_communication:
|
||||
for group_id in range(len(self._fp16_param_groups)):
|
||||
for param in self._fp16_param_groups[group_id]:
|
||||
# we should not reduce the param in moe
|
||||
if param.grad is not None and not is_moe_param(param):
|
||||
self._store_and_try_reduce_grads_by_bucket(param)
|
||||
|
||||
|
|
Loading…
Reference in New Issue