Merge branch 'feature_add_moe_data' of https://github.com/blankde/InternLM into feature_add_moe_data

pull/375/head
Wenwen Qu 2023-09-27 17:55:05 +08:00
commit 9a1bd616d0
1 changed files with 23 additions and 8 deletions

View File

@ -1,4 +1,5 @@
JOB_NAME = "7b_train" JOB_NAME = "7b_train"
DO_ALERT = False
SEQ_LEN = 2048 SEQ_LEN = 2048
HIDDEN_SIZE = 4096 HIDDEN_SIZE = 4096
@ -22,13 +23,16 @@ CHECKPOINT_EVERY = 50
ckpt = dict( ckpt = dict(
enable_save_ckpt=False, # enable ckpt save. enable_save_ckpt=False, # enable ckpt save.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt. save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# load_ckpt_folder=LOAD_CKPT_FOLDER, # Ckpt path to resume training(load weights and scheduler/context states). # load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
# load_model_only_folder=MODEL_ONLY_FOLDER, # Path to initialize with given model weights. load_ckpt_folder="local:llm_ckpts/",
load_optimizer=True, # Wheter to load optimizer states when continuing training. # 'load_ckpt_info' setting guide:
# 1. the 'path' indicate ckpt path,
# 2. the 'content means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
# 3. the ckpt_type means the type of checkpoint to be loaded, now only 'normal' type is supported.
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
checkpoint_every=CHECKPOINT_EVERY, checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt) async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload. async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
snapshot_ckpt_folder="/".join([SAVE_CKPT_FOLDER, "snapshot"]), # directory for snapshot ckpt storage path.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency. oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
) )
@ -52,6 +56,8 @@ data = dict(
min_length=50, min_length=50,
# train_folder=TRAIN_FOLDER, # train_folder=TRAIN_FOLDER,
# valid_folder=VALID_FOLDER, # valid_folder=VALID_FOLDER,
empty_cache_and_diag_interval=10,
diag_outlier_ratio=1.1,
) )
grad_scaler = dict( grad_scaler = dict(
@ -75,7 +81,8 @@ grad_scaler = dict(
hybrid_zero_optimizer = dict( hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication # Enable low_level_optimzer overlap_communication
zero_overlap_communication=True, overlap_sync_grad=True,
overlap_sync_param=True,
# bucket size for nccl communication params # bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024, reduce_bucket_size=512 * 1024 * 1024,
# grad clipping # grad clipping
@ -84,7 +91,6 @@ hybrid_zero_optimizer = dict(
loss = dict( loss = dict(
label_smoothing=0, label_smoothing=0,
moe_loss_coeff=1.0,
) )
adam = dict( adam = dict(
@ -121,12 +127,11 @@ model = dict(
num_layers=NUM_LAYER, num_layers=NUM_LAYER,
mlp_ratio=MLP_RATIO, mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False, apply_post_layer_norm=False,
dtype="torch.bfloat16", dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
norm_type="rmsnorm", norm_type="rmsnorm",
layer_norm_epsilon=1e-5, layer_norm_epsilon=1e-5,
use_flash_attn=True, use_flash_attn=True,
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used. num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
num_experts=8,
) )
""" """
zero1 parallel: zero1 parallel:
@ -142,6 +147,7 @@ tensor parallel: tensor parallel size, usually the number of GPUs per node.
""" """
parallel = dict( parallel = dict(
zero1=8, zero1=8,
tensor=1,
pipeline=dict(size=1, interleaved_overlap=True), pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False, sequence_parallel=False,
expert=2, expert=2,
@ -149,3 +155,12 @@ parallel = dict(
cudnn_deterministic = False cudnn_deterministic = False
cudnn_benchmark = False cudnn_benchmark = False
monitor = dict(
# feishu alert configs
alert=dict(
enable_feishu_alert=DO_ALERT,
feishu_alert_address=None, # feishu webhook to send alert message
light_monitor_address=None, # light_monitor address to send heartbeat
),
)