mirror of https://github.com/InternLM/InternLM
Merge branch 'feature_add_moe_data' of https://github.com/blankde/InternLM into feature_add_moe_data
commit
9a1bd616d0
|
@ -1,4 +1,5 @@
|
||||||
JOB_NAME = "7b_train"
|
JOB_NAME = "7b_train"
|
||||||
|
DO_ALERT = False
|
||||||
|
|
||||||
SEQ_LEN = 2048
|
SEQ_LEN = 2048
|
||||||
HIDDEN_SIZE = 4096
|
HIDDEN_SIZE = 4096
|
||||||
|
@ -22,13 +23,16 @@ CHECKPOINT_EVERY = 50
|
||||||
ckpt = dict(
|
ckpt = dict(
|
||||||
enable_save_ckpt=False, # enable ckpt save.
|
enable_save_ckpt=False, # enable ckpt save.
|
||||||
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
||||||
# load_ckpt_folder=LOAD_CKPT_FOLDER, # Ckpt path to resume training(load weights and scheduler/context states).
|
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
|
||||||
# load_model_only_folder=MODEL_ONLY_FOLDER, # Path to initialize with given model weights.
|
load_ckpt_folder="local:llm_ckpts/",
|
||||||
load_optimizer=True, # Wheter to load optimizer states when continuing training.
|
# 'load_ckpt_info' setting guide:
|
||||||
|
# 1. the 'path' indicate ckpt path,
|
||||||
|
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||||||
|
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
||||||
|
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||||||
checkpoint_every=CHECKPOINT_EVERY,
|
checkpoint_every=CHECKPOINT_EVERY,
|
||||||
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
||||||
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
||||||
snapshot_ckpt_folder="/".join([SAVE_CKPT_FOLDER, "snapshot"]), # directory for snapshot ckpt storage path.
|
|
||||||
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -52,6 +56,8 @@ data = dict(
|
||||||
min_length=50,
|
min_length=50,
|
||||||
# train_folder=TRAIN_FOLDER,
|
# train_folder=TRAIN_FOLDER,
|
||||||
# valid_folder=VALID_FOLDER,
|
# valid_folder=VALID_FOLDER,
|
||||||
|
empty_cache_and_diag_interval=10,
|
||||||
|
diag_outlier_ratio=1.1,
|
||||||
)
|
)
|
||||||
|
|
||||||
grad_scaler = dict(
|
grad_scaler = dict(
|
||||||
|
@ -75,7 +81,8 @@ grad_scaler = dict(
|
||||||
|
|
||||||
hybrid_zero_optimizer = dict(
|
hybrid_zero_optimizer = dict(
|
||||||
# Enable low_level_optimzer overlap_communication
|
# Enable low_level_optimzer overlap_communication
|
||||||
zero_overlap_communication=True,
|
overlap_sync_grad=True,
|
||||||
|
overlap_sync_param=True,
|
||||||
# bucket size for nccl communication params
|
# bucket size for nccl communication params
|
||||||
reduce_bucket_size=512 * 1024 * 1024,
|
reduce_bucket_size=512 * 1024 * 1024,
|
||||||
# grad clipping
|
# grad clipping
|
||||||
|
@ -84,7 +91,6 @@ hybrid_zero_optimizer = dict(
|
||||||
|
|
||||||
loss = dict(
|
loss = dict(
|
||||||
label_smoothing=0,
|
label_smoothing=0,
|
||||||
moe_loss_coeff=1.0,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
adam = dict(
|
adam = dict(
|
||||||
|
@ -121,12 +127,11 @@ model = dict(
|
||||||
num_layers=NUM_LAYER,
|
num_layers=NUM_LAYER,
|
||||||
mlp_ratio=MLP_RATIO,
|
mlp_ratio=MLP_RATIO,
|
||||||
apply_post_layer_norm=False,
|
apply_post_layer_norm=False,
|
||||||
dtype="torch.bfloat16",
|
dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
|
||||||
norm_type="rmsnorm",
|
norm_type="rmsnorm",
|
||||||
layer_norm_epsilon=1e-5,
|
layer_norm_epsilon=1e-5,
|
||||||
use_flash_attn=True,
|
use_flash_attn=True,
|
||||||
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
||||||
num_experts=8,
|
|
||||||
)
|
)
|
||||||
"""
|
"""
|
||||||
zero1 parallel:
|
zero1 parallel:
|
||||||
|
@ -142,6 +147,7 @@ tensor parallel: tensor parallel size, usually the number of GPUs per node.
|
||||||
"""
|
"""
|
||||||
parallel = dict(
|
parallel = dict(
|
||||||
zero1=8,
|
zero1=8,
|
||||||
|
tensor=1,
|
||||||
pipeline=dict(size=1, interleaved_overlap=True),
|
pipeline=dict(size=1, interleaved_overlap=True),
|
||||||
sequence_parallel=False,
|
sequence_parallel=False,
|
||||||
expert=2,
|
expert=2,
|
||||||
|
@ -149,3 +155,12 @@ parallel = dict(
|
||||||
|
|
||||||
cudnn_deterministic = False
|
cudnn_deterministic = False
|
||||||
cudnn_benchmark = False
|
cudnn_benchmark = False
|
||||||
|
|
||||||
|
monitor = dict(
|
||||||
|
# feishu alert configs
|
||||||
|
alert=dict(
|
||||||
|
enable_feishu_alert=DO_ALERT,
|
||||||
|
feishu_alert_address=None, # feishu webhook to send alert message
|
||||||
|
light_monitor_address=None, # light_monitor address to send heartbeat
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue