mirror of https://github.com/InternLM/InternLM
[doc ]update xtuner docs (#593)
parent
3215e83cf3
commit
8c546c9eb9
|
@ -1,6 +1,97 @@
|
|||
# Fine-tuning with InternLM
|
||||
|
||||
English | [简体中文](./README_zh-CN.md)
|
||||
|
||||
We recommend two projects to fine-tune InternLM.
|
||||
|
||||
1. [Xtuner](): brief introduction
|
||||
1. [XTuner](https://github.com/InternLM/xtuner) is an efficient, flexible and full-featured toolkit for fine-tuning large models.
|
||||
|
||||
2. [InternLM-Train](): brief introduction
|
||||
|
||||
|
||||
## XTuner
|
||||
|
||||
### Highlights
|
||||
|
||||
1. Support LLM, VLM pre-training / fine-tuning on almost all GPUs. XTuner is capable of fine-tuning InternLM2-7B on a single 8GB GPU, as well as multi-node fine-tuning of models exceeding 70B.
|
||||
2. Support various training algorithms ([QLoRA](http://arxiv.org/abs/2305.14314), [LoRA](http://arxiv.org/abs/2106.09685), full-parameter fune-tune), allowing users to choose the most suitable solution for their requirements.
|
||||
3. Compatible with [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀, easily utilizing a variety of ZeRO optimization techniques.
|
||||
4. The output models can seamlessly integrate with deployment and server toolkit ([LMDeploy](https://github.com/InternLM/lmdeploy)), and large-scale evaluation toolkit ([OpenCompass](https://github.com/open-compass/opencompass), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)).
|
||||
|
||||
### Installation
|
||||
|
||||
- It is recommended to build a Python 3.10 virtual environment using conda
|
||||
|
||||
```bash
|
||||
conda create --name xtuner-env python=3.10 -y
|
||||
conda activate xtuner-env
|
||||
```
|
||||
|
||||
- Install XTuner with DeepSpeed integration
|
||||
|
||||
```shell
|
||||
pip install -U 'xtuner[deepspeed]'
|
||||
```
|
||||
|
||||
### Fine-tune
|
||||
|
||||
XTuner supports the efficient fine-tune (*e.g.*, QLoRA) for InternLM2.
|
||||
|
||||
- **Step 0**, prepare the config. XTuner provides many ready-to-use configs and we can view all configs of InternLM2 by
|
||||
|
||||
```shell
|
||||
xtuner list-cfg -p internlm2
|
||||
```
|
||||
|
||||
Or, if the provided configs cannot meet the requirements, please copy the provided config to the specified directory and make specific modifications by
|
||||
|
||||
```shell
|
||||
xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}
|
||||
vi ${SAVE_PATH}/${CONFIG_NAME}_copy.py
|
||||
```
|
||||
|
||||
- **Step 1**, start fine-tuning.
|
||||
|
||||
```shell
|
||||
xtuner train ${CONFIG_NAME_OR_PATH}
|
||||
```
|
||||
|
||||
For example, we can start the QLoRA fine-tuning of InternLM2-Chat-7B with oasst1 dataset by
|
||||
|
||||
```shell
|
||||
# On a single GPU
|
||||
xtuner train internlm2_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
|
||||
# On multiple GPUs
|
||||
(DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
|
||||
(SLURM) srun ${SRUN_ARGS} xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2
|
||||
```
|
||||
|
||||
- `--deepspeed` means using [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀 to optimize the training. XTuner comes with several integrated strategies including ZeRO-1, ZeRO-2, and ZeRO-3. If you wish to disable this feature, simply remove this argument.
|
||||
|
||||
- **Step 2**, convert the saved PTH model (if using DeepSpeed, it will be a directory) to HuggingFace model, by
|
||||
|
||||
```shell
|
||||
xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
|
||||
```
|
||||
|
||||
### Chat
|
||||
|
||||
XTuner provides tools to chat with pretrained / fine-tuned large models.
|
||||
|
||||
```shell
|
||||
xtuner chat ${NAME_OR_PATH_TO_LLM} [optional arguments]
|
||||
```
|
||||
|
||||
For example, we can start the chat with
|
||||
|
||||
InternLM2-Chat-7B with adapter trained from oasst1:
|
||||
|
||||
```shell
|
||||
xtuner chat internlm/internlm2-chat-7b --adapter xtuner/internlm2-chat-7b-qlora-oasst1 --prompt-template internlm2_chat
|
||||
```
|
||||
|
||||
LLaVA-InternLM2-7B:
|
||||
|
||||
```shell
|
||||
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
||||
```
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
# 微调 InternLM
|
||||
|
||||
[English](./README.md) | 简体中文
|
||||
|
||||
我们推荐以下两种框架微调 InternLM
|
||||
|
||||
1. [XTuner](https://github.com/InternLM/xtuner) 是一个高效、灵活、全能的轻量化大模型微调工具库。
|
||||
|
||||
2. [InternLM-Train](): brief introduction
|
||||
|
||||
|
||||
## XTuner
|
||||
|
||||
### 亮点
|
||||
|
||||
1. 支持大语言模型 LLM、多模态图文模型 VLM 的预训练及轻量级微调。XTuner 支持在 8GB 显存下微调 7B 模型,同时也支持多节点跨设备微调更大尺度模型(70B+)。
|
||||
2. 支持 [QLoRA](http://arxiv.org/abs/2305.14314)、[LoRA](http://arxiv.org/abs/2106.09685)、全量参数微调等多种微调算法,支撑用户根据具体需求作出最优选择。
|
||||
3. 兼容 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀,轻松应用各种 ZeRO 训练优化策略。
|
||||
4. 训练所得模型可无缝接入部署工具库 [LMDeploy](https://github.com/InternLM/lmdeploy)、大规模评测工具库 [OpenCompass](https://github.com/open-compass/opencompass) 及 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)。
|
||||
|
||||
|
||||
### 安装
|
||||
|
||||
- 借助 conda 准备虚拟环境
|
||||
|
||||
```bash
|
||||
conda create --name xtuner-env python=3.10 -y
|
||||
conda activate xtuner-env
|
||||
```
|
||||
|
||||
- 安装集成 DeepSpeed 版本的 XTuner
|
||||
|
||||
```shell
|
||||
pip install -U 'xtuner[deepspeed]'
|
||||
```
|
||||
|
||||
### 微调
|
||||
|
||||
|
||||
- **步骤 0**,准备配置文件。XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看所有 InternLM2 的预置配置文件:
|
||||
|
||||
```shell
|
||||
xtuner list-cfg -p internlm2
|
||||
```
|
||||
|
||||
或者,如果所提供的配置文件不能满足使用需求,请导出所提供的配置文件并进行相应更改:
|
||||
|
||||
```shell
|
||||
xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}
|
||||
vi ${SAVE_PATH}/${CONFIG_NAME}_copy.py
|
||||
```
|
||||
|
||||
- **步骤 1**,开始微调。
|
||||
|
||||
```shell
|
||||
xtuner train ${CONFIG_NAME_OR_PATH}
|
||||
```
|
||||
|
||||
例如,我们可以利用 QLoRA 算法在 oasst1 数据集上微调 InternLM2-Chat-7B:
|
||||
|
||||
```shell
|
||||
# 单卡
|
||||
xtuner train internlm2_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
|
||||
# 多卡
|
||||
(DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
|
||||
(SLURM) srun ${SRUN_ARGS} xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2
|
||||
```
|
||||
|
||||
- `--deepspeed` 表示使用 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀 来优化训练过程。XTuner 内置了多种策略,包括 ZeRO-1、ZeRO-2、ZeRO-3 等。如果用户期望关闭此功能,请直接移除此参数。
|
||||
|
||||
- **步骤 2**,将保存的 PTH 模型(如果使用的DeepSpeed,则将会是一个文件夹)转换为 HuggingFace 模型:
|
||||
|
||||
```shell
|
||||
xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
|
||||
```
|
||||
|
||||
### 对话
|
||||
|
||||
XTuner 提供与大模型对话的工具。
|
||||
|
||||
```shell
|
||||
xtuner chat ${NAME_OR_PATH_TO_LLM} [optional arguments]
|
||||
```
|
||||
|
||||
例如:
|
||||
|
||||
与 InternLM2-Chat-7B, oasst1 adapter 对话:
|
||||
|
||||
```shell
|
||||
xtuner chat internlm/internlm2-chat-7b --adapter xtuner/internlm2-chat-7b-qlora-oasst1 --prompt-template internlm2_chat
|
||||
```
|
||||
|
||||
与 LLaVA-InternLM2-7B 对话:
|
||||
```shell
|
||||
xtuner chat internlm/internlm2-chat-7b --visual-encoder openai/clip-vit-large-patch14-336 --llava xtuner/llava-internlm2-7b --prompt-template internlm2_chat --image $IMAGE_PATH
|
||||
```
|
Loading…
Reference in New Issue