feat(optimizer): zero gradient count (#449)

* add zero grad count

* fix layer norm with pp

* fix layer norm with pp

* add zero_grad_profiling option

* fix param_metrics is not a tensor
pull/448/head
jiaopenglong 2023-10-27 16:26:55 +08:00 committed by GitHub
parent ad70e323eb
commit 87a3c5c374
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 257 additions and 93 deletions

View File

@ -34,7 +34,13 @@ from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.timeout import llm_timeout
from .base_optimizer import BaseOptimizer
from .utils import compute_layer_norm, compute_norm, compute_param_norm
from .utils import (
compute_layer_norm,
compute_layer_zero_grad_count,
compute_norm,
compute_param_norm,
compute_zero_grad_count,
)
inf = math.inf
logger = get_logger(__file__)
@ -564,6 +570,29 @@ class HybridZeroOptimizer(BaseOptimizer):
)
return total_param_norms
def _count_zero_grads_stage(
self, group_id: int = 0, last_bucket: bool = False, last_stage: bool = False, previous_zero_grad_count=None
):
params, grads = self._param_store.get_reduced_param_for_compute_norm(group_id=group_id, last_bucket=last_bucket)
total_zero_grad_count = {}
if len(params) == 0:
dtype = self.param_groups[group_id]["dtype"]
grads = [self.padding_grad.to(dtype)]
params = [self.padding_tensor.to(dtype)]
if self._clip_grad_norm > 0:
total_zero_grad_count = compute_zero_grad_count(
grads,
params,
last_stage=last_stage,
previous_zero_grad_count=previous_zero_grad_count,
zero_mode=self._broadcast_parallel_mode[group_id],
is_moe_group=self._is_moe_group(self.optim.param_groups[group_id]),
)
return total_zero_grad_count
@llm_timeout(func_name="optim_step")
def step(self, closure=None):
"""Performs a single optimization step.
@ -592,10 +621,13 @@ class HybridZeroOptimizer(BaseOptimizer):
# compute norm for gradients in the before bucket
groups_norms = []
groups_param_norms = []
group_param_zero_grad_count = []
for group_id in range(self.num_param_groups):
groups_norms.append(self._compute_norm_with_stage(group_id=group_id))
if gpc.config.get("grad_norm_profiling", False):
groups_param_norms.append(self._compute_param_norm_stage(group_id=group_id))
if gpc.config.get("zero_grad_profiling", False):
group_param_zero_grad_count.append(self._count_zero_grads_stage(group_id=group_id))
# clear reduced grads
# grads in the last bucket is reduced
@ -609,6 +641,8 @@ class HybridZeroOptimizer(BaseOptimizer):
# compute norm for gradients in the last bucket
total_norms = {}
total_param_norms = {}
total_param_zero_grad_count = {}
total_layer_zero_grad_count = {}
total_layer_norms = {}
for group_id in range(self.num_param_groups):
group_name = self.param_groups[group_id]["name"] if "name" in self.param_groups[group_id] else "default"
@ -629,6 +663,17 @@ class HybridZeroOptimizer(BaseOptimizer):
total_layer_norms[group_name], total_param_norms[group_name] = compute_layer_norm(
param_norms=param_norms, loss_scale=self.loss_scale.item()
)
if gpc.config.get("zero_grad_profiling", False):
zero_grad_count = self._count_zero_grads_stage(
group_id=group_id,
last_bucket=True,
last_stage=True,
previous_zero_grad_count=group_param_zero_grad_count[group_id],
)
(
total_layer_zero_grad_count[group_name],
total_param_zero_grad_count[group_name],
) = compute_layer_zero_grad_count(zero_grad_count)
# Need to allreduce(avg) the norms across different ranks because moe params will not be synced
# during allreduce
@ -646,8 +691,11 @@ class HybridZeroOptimizer(BaseOptimizer):
state, global_norms = self._step(closure=closure, norms=total_norms)
if gpc.config.get("grad_norm_profiling", False):
global_norms["layer_norms"] = total_layer_norms
global_norms["param_norms"] = total_param_norms
global_norms["layer_norm"] = total_layer_norms
global_norms["param_norm"] = total_param_norms
if gpc.config.get("zero_grad_profiling", False):
global_norms["layer_zero_grad"] = total_layer_zero_grad_count
global_norms["param_zero_grad"] = total_param_zero_grad_count
return state, global_norms

View File

@ -209,6 +209,15 @@ def calc_lp(grads, norm_type):
return norm
def calc_zero_grad(grads):
zero_count = 0
grad_size = 0
for grad in grads:
zero_count += (grad == 0).sum().item()
grad_size += grad.numel()
return torch.tensor([zero_count, grad_size])
def reduce_grads(gradients, parameters, fine_grained=False):
parallel_grads = []
if fine_grained:
@ -336,6 +345,117 @@ def compute_norm(
return total_norm
def compute_param_metric(
gradients,
parameters,
metric_type: str,
last_stage=False,
previous_param_metrics=None,
norm_type=2,
zero_mode=ParallelMode.ZERO1,
is_moe_group=False,
):
"""Get the metrics of params
Argumemts:
metric_type: (norm | zero_grad)
"""
enable_cuda_kernels = gradients[0].device.type == "cuda"
total_metrics = {}
param_metrics = {}
param_grads = reduce_grads(gradients, parameters, fine_grained=True)
if metric_type == "norm":
# Norm parameters.
norm_type = float(norm_type)
for param_name, grads in param_grads.items():
if metric_type == "norm":
if norm_type == inf:
param_metric = max(g.data.abs().max() for g in grads)
elif norm_type == 2.0 and enable_cuda_kernels:
param_metric = calc_l2_norm(grads) ** norm_type
else:
param_metric = calc_lp(grads, norm_type)
param_metrics[param_name] = param_metric.item() if torch.is_tensor(param_metric) else param_metric
elif metric_type == "zero_grad":
param_zero_grad_count = calc_zero_grad(grads)
param_metrics[param_name] = param_zero_grad_count
if last_stage is False:
return param_metrics
if previous_param_metrics is not None:
for key, value in previous_param_metrics.items():
if key not in param_metrics:
param_metrics[key] = value
continue
if metric_type == "norm" and norm_type == inf:
param_metrics[key] = max(param_metrics[key], value)
else:
param_metrics[key] += value
# model parallel
model_parallel_param_metrics = {}
if gpc.is_initialized(ParallelMode.MODEL):
parallel_param_metrics = [None for _ in range(gpc.get_world_size(ParallelMode.MODEL))]
dist.all_gather_object(parallel_param_metrics, param_metrics, group=gpc.get_group(ParallelMode.MODEL))
for local_param_metric in parallel_param_metrics:
for param_name, param_metric in local_param_metric.items():
if param_name not in model_parallel_param_metrics:
model_parallel_param_metrics[param_name] = 0.0
if metric_type == "norm" and norm_type == inf:
model_parallel_param_metrics[param_name] = max(
model_parallel_param_metrics[param_name], param_metric
)
else:
model_parallel_param_metrics[param_name] += param_metric
# zero parallel
zero_param_metrics = [None for _ in range(gpc.get_world_size(zero_mode))]
dist.all_gather_object(zero_param_metrics, model_parallel_param_metrics, group=gpc.get_group(zero_mode))
for local_param_metric in zero_param_metrics:
for param_name, param_metric in local_param_metric.items():
if param_name not in total_metrics:
total_metrics[param_name] = 0.0
if metric_type == "norm" and norm_type == inf:
total_metrics[param_name] = max(total_metrics[param_name], param_metric)
else:
total_metrics[param_name] += param_metric
# moe
if is_moe_group:
pg = gpc.get_group(ParallelMode.EXPERT)
total_metric_values = list(total_metrics.values())
if isinstance(total_metric_values[0], torch.Tensor):
scaled_param_metric = torch.stack(total_metric_values).to(device=get_current_device())
else:
scaled_param_metric = torch.cuda.FloatTensor(total_metric_values, device=get_current_device())
scaled_param_metric = scaled_param_metric / float(gpc.get_world_size(ParallelMode.EXPERT))
dist.all_reduce(scaled_param_metric, group=pg)
for i, param_name in enumerate(total_metrics.keys()):
total_metrics[param_name] = scaled_param_metric[i]
# calc zero grad percent
if metric_type == "zero_grad":
for param_name, param_metric in total_metrics.items():
total_metrics[param_name] = (param_metric[0] / param_metric[1]).item()
# scale norm
if metric_type == "norm":
for param_name, param_metric in total_metrics.items():
if torch.is_tensor(param_metric):
param_metric = param_metric.item()
if param_metric in (inf, -inf):
total_metrics[param_name] = -1
elif math.isnan(param_metric):
total_metrics[param_name] = -2
else:
total_metrics[param_name] = param_metric
return total_metrics
def compute_param_norm(
gradients,
parameters,
@ -355,80 +475,45 @@ def compute_param_norm(
Returns:
The norm of the parameters.
"""
enable_cuda_kernels = gradients[0].device.type == "cuda"
# Norm parameters.
norm_type = float(norm_type)
total_param_norms = {}
param_grads = reduce_grads(gradients, parameters, fine_grained=True)
return compute_param_metric(
gradients,
parameters,
metric_type="norm",
last_stage=last_stage,
previous_param_metrics=previous_param_norms,
norm_type=norm_type,
zero_mode=zero_mode,
is_moe_group=is_moe_group,
)
param_norms = {}
for param_name, grads in param_grads.items():
if norm_type == inf:
param_norm = max(g.data.abs().max() for g in grads)
elif norm_type == 2.0 and enable_cuda_kernels:
param_norm = calc_l2_norm(grads) ** norm_type
else:
param_norm = calc_lp(grads, norm_type)
param_norms[param_name] = param_norm.item() if torch.is_tensor(param_norm) else param_norm
if last_stage is False:
return param_norms
def compute_zero_grad_count(
gradients,
parameters,
last_stage=False,
previous_zero_grad_count=None,
zero_mode=ParallelMode.ZERO1,
is_moe_group=False,
):
"""Get the count of zero gradient for each parameters
Arguments:
gradients (Iterable[Tensor]): The gradient value.
parameters (Iterable[Tensor]): The parameter each gradient corresponds to.
if previous_param_norms is not None:
for key, value in previous_param_norms.items():
if key not in param_norms:
param_norms[key] = value
continue
Returns:
The count of zero gradient for each parameters
"""
if norm_type == inf:
param_norms[key] = max(param_norms[key], value)
else:
param_norms[key] += value
# model parallel
model_parallel_param_norms = {}
if gpc.is_initialized(ParallelMode.MODEL):
parallel_param_norms = [None for _ in range(gpc.get_world_size(ParallelMode.MODEL))]
dist.all_gather_object(parallel_param_norms, param_norms, group=gpc.get_group(ParallelMode.MODEL))
for local_param_norm in parallel_param_norms:
for param_name, param_norm in local_param_norm.items():
if param_name not in model_parallel_param_norms:
model_parallel_param_norms[param_name] = 0.0
if norm_type == inf:
model_parallel_param_norms[param_name] = max(model_parallel_param_norms[param_name], param_norm)
else:
model_parallel_param_norms[param_name] += param_norm
# zero parallel
zero_param_norms = [None for _ in range(gpc.get_world_size(zero_mode))]
dist.all_gather_object(zero_param_norms, model_parallel_param_norms, group=gpc.get_group(zero_mode))
for local_param_norm in zero_param_norms:
for param_name, param_norm in local_param_norm.items():
if param_name not in total_param_norms:
total_param_norms[param_name] = 0.0
if norm_type == inf:
total_param_norms[param_name] = max(total_param_norms[param_name], param_norm)
else:
total_param_norms[param_name] += param_norm
# moe
if is_moe_group:
pg = gpc.get_group(ParallelMode.EXPERT)
scaled_param_norm = torch.cuda.FloatTensor(list(total_param_norms.values()), device=get_current_device())
scaled_param_norm = scaled_param_norm / float(gpc.get_world_size(ParallelMode.EXPERT))
dist.all_reduce(scaled_param_norm, group=pg)
for i, param_name in enumerate(total_param_norms.keys()):
total_param_norms[param_name] = scaled_param_norm[i].item()
# scale
for param_name, param_norm in total_param_norms.items():
if param_norm in (inf, -inf):
total_param_norms[param_name] = -1
elif math.isnan(param_norm):
total_param_norms[param_name] = -2
return total_param_norms
return compute_param_metric(
gradients,
parameters,
metric_type="zero_grad",
last_stage=last_stage,
previous_param_metrics=previous_zero_grad_count,
zero_mode=zero_mode,
is_moe_group=is_moe_group,
)
def compute_layer_norm(param_norms, loss_scale):
@ -440,20 +525,37 @@ def compute_layer_norm(param_norms, loss_scale):
for param_name, param_norm in param_norms.items():
layer_name, param_key = param_name.split("-")
if layer_name not in param_norms_groupby_layer:
param_norms_groupby_layer[layer_name] = {}
if param_key not in param_norms_groupby_layer:
param_norms_groupby_layer[param_key] = {}
if layer_name not in layer_norms:
layer_norms[layer_name] = 0.0
if param_norm not in (-1, -2):
param_norm = param_norm**0.5 / loss_scale
param_norms_groupby_layer[layer_name][param_key] = param_norm
param_norms_groupby_layer[param_key][layer_name] = param_norm
layer_norms[layer_name] += param_norm
return layer_norms, param_norms_groupby_layer
def compute_layer_zero_grad_count(param_zero_grad_count):
param_zero_grad_count_groupby_layer = {}
layer_zero_grad_count = {}
for param_name, zero_grad_count in param_zero_grad_count.items():
layer_name, param_key = param_name.split("-")
if param_key not in param_zero_grad_count_groupby_layer:
param_zero_grad_count_groupby_layer[param_key] = {}
if layer_name not in layer_zero_grad_count:
layer_zero_grad_count[layer_name] = 0.0
param_zero_grad_count_groupby_layer[param_key][layer_name] = zero_grad_count
layer_zero_grad_count[layer_name] += zero_grad_count
return layer_zero_grad_count, param_zero_grad_count_groupby_layer
class BaseGradScaler(ABC):
"""A base class for the gradient scaler.

View File

@ -1,7 +1,6 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
import functools
import time
from functools import partial
@ -159,7 +158,7 @@ def initialize_optimizer(model: Union[nn.Module, nn.ModuleList]):
Returns:
A tuple of (optimizer, beta2_scheduler, lr_scheduler).
"""
if gpc.config.get("grad_norm_profiling", False):
if gpc.config.get("grad_norm_profiling", False) or gpc.config.get("zero_grad_profiling", False):
# set the layer name as an attribute of the model parameters
set_model_params_layer_name(model)
@ -527,20 +526,28 @@ def record_current_batch_training_metrics(
for key, value in acc_perplex.items():
infos[key] = value
if gpc.config.get("grad_norm_profiling", False):
layer_norms = copy.deepcopy(grad_norm["layer_norms"])
param_norms = copy.deepcopy(grad_norm["param_norms"])
for group_name, value in layer_norms.items():
if value:
title = f"laye_norm_group_{group_name}"
writer.add_scalars(key=title, value=value, step=train_state.step_count)
for group_name, layer_group in param_norms.items():
if layer_group:
for layer_name, param_group in layer_group.items():
title = f"param_norm_{layer_name}_{group_name}"
writer.add_scalars(key=title, value=param_group, step=train_state.step_count)
del grad_norm["layer_norms"]
del grad_norm["param_norms"]
if gpc.config.get("grad_norm_profiling", False) or gpc.config.get("zero_grad_profiling", False):
layer_metrics = ["layer_norm", "layer_zero_grad"]
param_metrics = ["param_norm", "param_zero_grad"]
for layer_metric_name in layer_metrics:
layer_metric = grad_norm.get(layer_metric_name, {})
if layer_metric:
for group_name, value in layer_metric.items():
if value:
title = f"{layer_metric_name}/{group_name}"
writer.add_scalars(key=title, value=value, step=train_state.step_count)
del grad_norm[layer_metric_name]
for param_metric_name in param_metrics:
param_metric = grad_norm.get(param_metric_name, {})
if param_metric:
for group_name, layer_group in param_metric.items():
if layer_group:
for param_name, param_group in layer_group.items():
title = f"{param_name}/{group_name}_{param_metric_name}"
writer.add_scalars(key=title, value=param_group, step=train_state.step_count)
del grad_norm[param_metric_name]
line = ""
for key, value in infos.items():

View File

@ -7,6 +7,7 @@ from torch import nn
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.naive_amp import NaiveAMPModel
from internlm.solver.pipeline_utils import partition_uniform
def is_model_parallel_parameter(p):
@ -70,18 +71,24 @@ def set_model_params_layer_name(model):
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
"""
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
all_parts = partition_uniform(gpc.config.model.num_layers, pipeline_size, gpc.config.model.num_chunks)
parts = all_parts[pipeline_rank]
if not isinstance(model, nn.ModuleList):
model = [model]
for _chunk in model:
for chunk_idx, _chunk in enumerate(model):
if isinstance(_chunk, NaiveAMPModel):
_chunk = _chunk.model
chunk_start = parts[chunk_idx][0]
# Create a unique layer name based on the block's class name and index
for _, children in _chunk.named_children():
if isinstance(children, nn.ModuleList):
for idx, block in enumerate(children):
for param_name, param in block.named_parameters():
layer_name = f"{block.__class__.__name__}Block{idx}"
layer_name = f"{block.__class__.__name__}Block{idx + chunk_start}"
layer_param_name = f"{layer_name}-{param_name}"
param.__setattr__("layer_name", layer_name)
param.__setattr__("param_name", layer_param_name)