add doc for En. version

pull/319/head
Wenwen Qu 2023-09-26 15:09:39 +08:00
parent 95e800e10b
commit 7d2d9fc2f0
2 changed files with 51 additions and 3 deletions

View File

@ -455,3 +455,51 @@ msgstr ""
msgid "Whether the gradient is success updated, and the gradient."
msgstr ""
#: ../../source/parallel.rst:155
msgid "混合精度"
msgstr "Mixed Precision"
#: ../../source/parallel.rst:156
msgid ""
"混合精度是指在模型训练的过程中同时使用16位和32位浮点类型是一种在最小化精度损失的前提下加速模型训练的方法。 "
"混合精度通过让模型的某些部分使用32位浮点数以保持数值稳定性并在其余部分利用半精度浮点数加速训练并减少内存使用在评估指标如准确率方面仍可以获得同等的训练效果。"
msgstr ""
"Mixed precision refers to using both 16-bit and 32-bit floating-point types to train model, which can accelerate the model training while minimizing the accuracy loss. "
"Mixed precision training uses 32-bit floating-point types in certain parts of the model to maintain numerical stability, and accelerate training and reduce memory usage by using 16-bit floating-point types in other parts. Mixed precision can achieve the same training effect in evaluating indicators such as accuracy."
#: internlm.core.naive_amp.NaiveAMPModel:1 of
msgid ""
"This is a wrapper class for a model that automatically casts the model, "
"its inputs, and outputs into fp16. It also provides options to cast the "
"output back to fp32 and to synchronize buffers."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:4 of
msgid "The model to be wrapped and cast into fp16."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:6 of
msgid "If True, the output of this module is cast into fp32. Defaults to True."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:8 of
msgid ""
"The parallel group mode used in this module. Defaults to "
"``ParallelMode.DATA``."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:11 of
msgid "If True, the buffers are synchronized. Defaults to True."
msgstr ""
#: ../../source/parallel.rst:161
msgid "InternLM默认将模型转换为16位精度进行训练在配置文件中可以设置默认类型为其他数据类型。在使用混合精度时需要在构建模型时使用"
msgstr "InternLM converts the model to 16-bit floating-point types for model training by default (the default type can be set to other data types in the configuration file). When using mixed precision, it is necessary to use "
#: ../../source/parallel.rst:167
msgid "将模型的某个子模块设置为32精度进行训练InternLM会在模型训练时自动将数据类型转换成需要的精度。"
msgstr "to set a sub-module of the model to 16-bit floating-point types for training, and InternLM will automatically convert the data type to the required precision during model training."
#: ../../source/parallel.rst:169
msgid "例如:"
msgstr "For example:"

View File

@ -154,7 +154,7 @@ ZeRO1.5 的实现使用了分层分片的概念,通过配置值 ``parallel.zer
混合精度
-----------------
混合精度是指在模型训练的过程中同时使用16位和32位浮点类型是一种在最小化精度损失的前提下加速模型训练的方法。
混合精度通过让模型的某些部分使用32位浮点数以保持数值稳定性并在其余部分利用半精度浮点数加速训练并减少内存使用在评估指标如准确率方面仍可以获得同等的训练效果。
混合精度通过让模型的某些部分使用32位浮点数以保持数值稳定性并在其余部分利用半精度浮点数加速训练并可以减少内存使用,在评估指标(如准确率)方面仍可以获得同等的训练效果。
.. autoclass:: internlm.core.naive_amp.NaiveAMPModel
@ -177,10 +177,10 @@ InternLM默认将模型转换为16位精度进行训练在配置文件中可
self.linear2 = nn.Linear(1, 4, bias=False)
model = MlpModel()
# 将model.linear2设置为fp32模块
# set model.linear2 as fp32 module
set_fp32_attr_to_module(model.linear2)
# 混合精度模型
# apply mixed precision
model = NaiveAMPModel(
model=model,
output_to_fp32=True,