feat(model/overlap_handler.py): add memory_pool switch and refactor overlap handler

pull/436/head
huangting4201 2023-11-13 21:09:59 +08:00
parent b5e4d04a9a
commit 74754397df
5 changed files with 128 additions and 96 deletions

View File

@ -163,7 +163,7 @@ pipeline parallel (dict):
"""
parallel = dict(
zero1=dict(size=-1, fsdp=False),
tensor=dict(size=4, sp="intern", intern_overlap=True),
tensor=dict(size=4, sp="intern", intern_overlap=True, memory_pool=True),
pipeline=dict(size=1, interleaved_overlap=True),
)

View File

@ -13,6 +13,7 @@ from internlm.core.scheduler import SchedulerHook
from internlm.model.embedding import Embedding1D
from internlm.model.linear import FSTPLinear, ScaleColumnParallelLinear
from internlm.model.utils import (
all_gather_raw,
all_gather_raw_bias_memory_pool,
all_gather_raw_memory_pool,
)
@ -29,14 +30,17 @@ class FSTPOverlapHandler:
self.fstp_outs = []
self.fstp_modules = []
self.module_name = ["Wqkv", "out_proj", "w1", "w2", "w3"]
self.fstp_global_handle = dict() # key: fstp module; value: module global all-gather op handle
self.weight_global_handle = dict() # key: fstp module; value: module global all-gather op handle
self.bias_global_handle = dict() # key: fstp module; value: module bias global all-gather op handle
self.weight_global_output = dict() # key: fstp module; value: module global weight after all-gather op
self.bias_global_output = dict() # key: fstp module; value: module bias global weight after all-gather op
self.module_to_index = dict() # key: fstp module; value: transformer block index
self.index_to_fstp_modules = dict() # key: transformer block index; value: fsdp modules
self.last_block = None
self.head = []
self.embedding = []
self.model_checkpoint = gpc.config.model.checkpoint
self.enable_memory_pool = gpc.config.parallel["tensor"].get("memory_pool", False)
self.is_forward = True
self.reduce_scatter_handlers = {}
@ -60,34 +64,36 @@ class FSTPOverlapHandler:
for idx, block in enumerate(children):
self.index_to_fstp_modules[idx] = []
for _sub_name, sub in block.named_children():
sub_modules = list(sub.children())
if len(sub_modules) > 0:
for name, child in sub.named_children():
if name == "out_proj":
self.fstp_outs.append(child)
self.module_to_index[child] = idx
if isinstance(child, FSTPLinear):
self.module_to_index[child] = idx
self.fstp_modules.append(child)
self.index_to_fstp_modules[idx].append(child)
for name, child in sub.named_children():
if name == "out_proj":
self.fstp_outs.append(child)
self.module_to_index[child] = idx
if isinstance(child, FSTPLinear):
self.module_to_index[child] = idx
self.fstp_modules.append(child)
self.index_to_fstp_modules[idx].append(child)
setattr(child, "_fstp_name", name)
setattr(child, "_fstp_name", name)
_full_name = f"{_chunk_name}.{idx}.{_sub_name}.{name}"
setattr(child.weight, "_fstp_reduce_scatter_str", f"{_full_name}.weight")
if child.bias is not None:
setattr(child.bias, "_fstp_reduce_scatter_str", f"{_full_name}.bias")
_full_name = f"{_chunk_name}.{idx}.{_sub_name}.{name}"
setattr(child.weight, "_fstp_reduce_scatter_str", f"{_full_name}.weight")
if child.bias is not None:
setattr(child.bias, "_fstp_reduce_scatter_str", f"{_full_name}.bias")
self.num_blocks = len(self.index_to_fstp_modules)
self._initialize_memory_pool()
if self.enable_memory_pool:
self._initialize_memory_pool()
self._register_sync_parameters_hook()
def get_zero_by_shape(self, size: tuple, dtype, device) -> torch.Tensor:
if size not in self.zero_const_pool:
self.zero_const_pool[size] = torch.zeros(*size, dtype=dtype, device=device).contiguous()
if self.enable_memory_pool:
if size not in self.zero_const_pool:
self.zero_const_pool[size] = torch.zeros(*size, dtype=dtype, device=device).contiguous()
return self.zero_const_pool[size]
return self.zero_const_pool[size]
else:
return torch.zeros(*size, dtype=dtype, device=device).contiguous()
def set_forward_mode(self, flag):
self.is_forward = flag
@ -122,14 +128,20 @@ class FSTPOverlapHandler:
self.all_gather_memory_pool.append(weight) # containing two groups of block weight
def clear_memory_pool(self) -> None:
assert self.enable_memory_pool
self.zero_const_pool = {}
self.reduce_scatter_memory_pool = {}
def get_all_gather_memory(self, module):
def _get_weight_from_memory_pool(self, module):
assert self.enable_memory_pool
block_index = self.module_to_index[module]
return self.all_gather_memory_pool[block_index % 2][module._fstp_name]
def get_bias_memory(self, module: nn.Module):
def _get_bias_from_memory_pool(self, module: nn.Module):
assert self.enable_memory_pool
block_index = self.module_to_index[module]
# if the bias memory pool is empty or module has been not allocated memory
if len(self.all_gather_bias_memory_pool) == 0:
@ -151,7 +163,21 @@ class FSTPOverlapHandler:
return self.all_gather_bias_memory_pool[block_index % 2][module._fstp_name]
def get_weight_all_gather(self, module):
if self.enable_memory_pool:
return self._get_weight_from_memory_pool(module)
else:
return self.weight_global_output[module]
def get_bias_all_gather(self, module):
if self.enable_memory_pool:
return self._get_bias_from_memory_pool(module)
else:
return self.bias_global_output[module]
def get_reduce_scatter_memory(self, key):
assert self.enable_memory_pool
# if key not in dict
if key not in self.reduce_scatter_memory_pool:
self.reduce_scatter_memory_pool[key] = []
@ -171,11 +197,11 @@ class FSTPOverlapHandler:
return self.reduce_scatter_memory_pool[key][cur_len]
def release_reduce_scatter_memory(self, key, index):
assert self.enable_memory_pool
self.reduce_scatter_memory_pool[key][index].idle = True
def _all_gather_block_weight_memory_pool(self, block_index: int):
fstp_modules = self.index_to_fstp_modules[block_index]
for module in fstp_modules:
def _all_gather_module_weight(self, module):
if self.enable_memory_pool:
if module.bias is not None:
bias_handle = all_gather_raw_bias_memory_pool(
module.bias,
@ -191,103 +217,102 @@ class FSTPOverlapHandler:
async_op=True,
module=module,
)
self.fstp_global_handle[module] = weight_handle
self.weight_global_handle[module] = weight_handle
else:
if module.bias is not None:
bias_output, bias_handle = all_gather_raw(
module.bias,
self.process_group,
async_op=True,
)
self.bias_global_handle[module] = bias_handle
self.bias_global_output[module] = bias_output
weight_output, weight_handle = all_gather_raw(
module.weight,
self.process_group,
async_op=True,
)
self.weight_global_handle[module] = weight_handle
self.weight_global_output[module] = weight_output
def _all_gather_block_weight(self, block_index: int):
fstp_modules = self.index_to_fstp_modules[block_index]
for module in fstp_modules:
self._all_gather_module_weight(module)
def _register_sync_parameters_hook(self) -> None:
"""
register forward hooks and backward hooks for fstp modules.
"""
def _wait_handle(module):
handle = self.weight_global_handle[module]
handle.wait()
if module.bias is not None:
bias_handle = self.bias_global_handle[module]
bias_handle.wait()
def _clear_handle(module):
if module in self.weight_global_handle:
del self.weight_global_handle[module]
if module in self.bias_global_handle:
del self.bias_global_handle[module]
# if module in self.weight_global_output:
# del self.weight_global_output[module]
# if module in self.bias_global_output:
# del self.bias_global_output[module]
def _post_forward_hook_for_embedding(module: nn.Module, inputs: Any, output: Any): # pylint: disable=W0613
self._all_gather_block_weight_memory_pool(0)
self._all_gather_block_weight(0)
def _pre_forward_hook_for_out_proj(module: nn.Module, inputs: Any): # pylint: disable=W0613
block_index = self.module_to_index[module]
if self.model_checkpoint and self.is_forward is False:
if block_index - 1 >= 0:
self._all_gather_block_weight_memory_pool(block_index - 1)
self._all_gather_block_weight(block_index - 1)
else:
# start the all-gather for next block
if block_index + 1 < self.num_blocks:
self._all_gather_block_weight_memory_pool(block_index + 1)
self._all_gather_block_weight(block_index + 1)
def _pre_forward_hook_for_module(module: nn.Module, inputs: Any): # pylint: disable=W0613
if module in self.fstp_global_handle:
handle = self.fstp_global_handle[module]
handle.wait()
if module.bias is not None:
bias_handle = self.bias_global_handle[module]
bias_handle.wait()
else:
weight_handle = all_gather_raw_memory_pool(
module.weight,
self.process_group,
async_op=True,
module=module,
)
self.fstp_global_handle[module] = weight_handle
weight_handle.wait()
if module not in self.weight_global_handle:
self._all_gather_module_weight(module)
_wait_handle(module)
def _pre_forward_hook_for_block(block: nn.Module, inputs: Any): # pylint: disable=W0613
fstp_modules = self.index_to_fstp_modules[self.num_blocks - 1]
if module in fstp_modules:
weight_handle = all_gather_raw_memory_pool(
module.weight,
self.process_group,
async_op=True,
module=module,
)
self.fstp_global_handle[module] = weight_handle
weight_handle.wait()
self._all_gather_module_weight(module)
_wait_handle(module)
def _post_forward_hook_for_module(module: nn.Module, inputs: Any, output: Any): # pylint: disable=W0613
if module in self.fstp_global_handle:
del self.fstp_global_handle[module]
_clear_handle(module)
def _post_backward_hook_for_head(module: nn.Module, grad_input, grad_output): # pylint: disable=W0613
first_backward_module = self.fstp_modules[-1]
weight_handle = all_gather_raw_memory_pool(
first_backward_module.weight,
self.process_group,
async_op=True,
module=first_backward_module,
)
self.fstp_global_handle[first_backward_module] = weight_handle
self._all_gather_module_weight(self.fstp_modules[-1])
def _pre_backward_hook_for_head(module: nn.Module, grad_output):
if self.is_forward is False:
self._all_gather_block_weight_memory_pool(self.num_blocks - 1)
self._all_gather_block_weight(self.num_blocks - 1)
def _pre_backward_hook_for_module(module: nn.Module, grad_output): # pylint: disable=W0613
# wait handle for current module
if module in self.fstp_global_handle:
weight_handle = self.fstp_global_handle[module]
weight_handle.wait()
else:
weight_handle = all_gather_raw_memory_pool(
module.weight,
self.process_group,
async_op=True,
module=module,
)
self.fstp_global_handle[module] = weight_handle
weight_handle.wait()
if module not in self.weight_global_handle:
self._all_gather_module_weight(module)
_wait_handle(module)
# start the all-gather for next module
module_index = self.fstp_modules.index(module)
if module_index - 1 >= 0:
next_module = self.fstp_modules[module_index - 1]
weight_handle = all_gather_raw_memory_pool(
next_module.weight,
self.process_group,
async_op=True,
module=next_module,
)
self.fstp_global_handle[next_module] = weight_handle
self._all_gather_module_weight(next_module)
def _post_backward_hook_for_module(module, grad_input, grad_output): # pylint: disable=W0613
if module in self.fstp_global_handle:
del self.fstp_global_handle[module]
_clear_handle(module)
# register forward hooks
# 1. register post_forward_hook @embedding module to prefetch for block 0

View File

@ -132,7 +132,7 @@ def all_gather_raw_memory_pool(
module: nn.Module = None,
):
handle = torch.distributed.all_gather_into_tensor(
gpc.fstp_handler.get_all_gather_memory(module=module),
gpc.fstp_handler.get_weight_all_gather(module=module),
input_.contiguous(),
group=process_group,
async_op=async_op,
@ -147,7 +147,7 @@ def all_gather_raw_bias_memory_pool(
module: nn.Module = None,
):
handle = torch.distributed.all_gather_into_tensor(
gpc.fstp_handler.get_bias_memory(module=module),
gpc.fstp_handler.get_bias_all_gather(module=module),
input_.contiguous(),
group=process_group,
async_op=async_op,
@ -177,8 +177,13 @@ def reduce_scatter_raw(input_: Tensor, process_group: ProcessGroup, async_op: bo
def reduce_scatter_raw_memory_pool(input_: Tensor, process_group: ProcessGroup, async_op: bool = False):
world_size = torch.distributed.get_world_size(process_group)
assert input_.shape[0] % world_size == 0
size = (input_.shape[0] // world_size, *input_.shape[1:])
output = gpc.fstp_handler.get_reduce_scatter_memory(size)
if gpc.fstp_handler.enable_memory_pool:
size = (input_.shape[0] // world_size, *input_.shape[1:])
output = gpc.fstp_handler.get_reduce_scatter_memory(size)
else:
output = torch.empty(
input_.shape[0] // world_size, *input_.shape[1:], dtype=input_.dtype, device=input_.device
).contiguous()
handle = torch.distributed.reduce_scatter_tensor(
output, input_.contiguous(), group=process_group, async_op=async_op
)
@ -493,14 +498,14 @@ class FSTPFusedDenseFunc(torch.autograd.Function):
if world_size > 1:
# do all_gather for weight and bias before actual computation
if overlap_handler is not None:
total_weight = gpc.fstp_handler.get_all_gather_memory(module=module)
total_weight = gpc.fstp_handler.get_weight_all_gather(module=module)
else:
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
handle_weight.wait()
# TODO memory pool for bias
if bias is not None:
if overlap_handler is not None:
total_bias = gpc.fstp_handler.get_bias_memory(module=module)
total_bias = gpc.fstp_handler.get_bias_all_gather(module=module)
else:
total_bias, handle_bias = all_gather_raw(bias, process_group, async_op=True)
handle_bias.wait()
@ -554,7 +559,7 @@ class FSTPFusedDenseFunc(torch.autograd.Function):
world_size = gpc.get_world_size(ParallelMode.TENSOR)
if world_size > 1:
if overlap_handler is not None:
total_weight = gpc.fstp_handler.get_all_gather_memory(module=module)
total_weight = gpc.fstp_handler.get_weight_all_gather(module=module)
else:
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
handle_weight.wait()
@ -655,7 +660,7 @@ class FSTPFusedDenseFuncTorch(FSTPFusedDenseFunc):
world_size = gpc.get_world_size(ParallelMode.TENSOR)
if world_size > 1:
if overlap_handler is not None:
total_weight = gpc.fstp_handler.get_all_gather_memory(module=module)
total_weight = gpc.fstp_handler.get_weight_all_gather(module=module)
else:
total_weight, handle_weight = all_gather_raw(weight, process_group, async_op=True)
handle_weight.wait()

View File

@ -389,7 +389,9 @@ class HybridZeroOptimizer(BaseOptimizer):
_param.grad.add_(_grad)
# release cuda memory.
self._fstp_handler.release_reduce_scatter_memory(key=tuple(_grad.size()), index=_grad.index)
if self._fstp_handler.enable_memory_pool:
self._fstp_handler.release_reduce_scatter_memory(key=tuple(_grad.size()), index=_grad.index)
_grad = None
self._fstp_handler.reduce_scatter_handlers[_key] = None
bucket.reset_by_rank(reduce_rank)

View File

@ -324,7 +324,7 @@ def main(args):
if batch_count % 2 == 0:
prof.step()
if gpc.fstp_handler is not None:
if gpc.fstp_handler is not None and gpc.fstp_handler.enable_memory_pool:
gpc.fstp_handler.clear_memory_pool()
# torch.cuda.memory._dump_snapshot(f"my_snapshot_{gpc.get_global_rank()}.pickle")
torch.cuda.reset_peak_memory_stats()